organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-ethyl­sulfinyl-2-(4-fluoro­phenyl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 4 January 2010; accepted 6 January 2010; online 9 January 2010)

In the title compound, C16H12BrFO2S, the 4-fluoro­phenyl ring is rotated out of the benzofuran plane, as indicated by the dihedral angle of 5.94 (5)°. The crystal structure exhibits aromatic ππ inter­actions between the benzene ring and the 4-fluoro­phenyl ring of an adjacent mol­ecule [centroid–centroid distance = 3.632 (2) Å], and a Br⋯O halogen bond with a Br⋯O distance of 3.101 (1) Å.

Related literature

For the crystal structures of similar 2-(4-fluoro­phen­yl)-5-halo-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2608.], 2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12BrFO2S

  • Mr = 367.23

  • Triclinic, [P \overline 1]

  • a = 7.2806 (5) Å

  • b = 9.4999 (6) Å

  • c = 10.8334 (6) Å

  • α = 101.360 (3)°

  • β = 98.783 (3)°

  • γ = 104.771 (3)°

  • V = 693.87 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 100 K

  • 0.30 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.457, Tmax = 0.606

  • 12298 measured reflections

  • 3202 independent reflections

  • 3040 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.01

  • 3202 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran ring systems have drawn considerable attention due to their diverse biological activities (Aslam et al., 2006; Galal et al., 2009; Howlett et al. 1999) and these compounds are occurring in natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009, 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 5.94 (5)°. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene ring and the 4-fluorophenyl ring of an adjacent molecule. The Cg1-Cg2i distance is 3.632 (2) Å (Cg1 and Cg2 are the centroids of the C2-C7 benzene ring and the C9-C14 4-fluorophenyl ring, respectively). The crystal packing (Fig. 2) is further stabilized by a Br···O halogen bond between the bromine and the oxygen of the SO unit [Br···O2ii = 3.101 (1) Å; C–Br···O2 = 168.51 (6)°] (Politzer et al., 2007).

Related literature top

For the crystal structures of similar 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Howlett et al. (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (208 mg, 0.93 mmol) was added in small portions to a stirred solution of 5-bromo-3-ethylsulfanyl-2-(4-fluorophenyl)-1-benzofuran (298 mg, 0.85 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 428-429 K; Rf = 0.58 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

Benzofuran ring systems have drawn considerable attention due to their diverse biological activities (Aslam et al., 2006; Galal et al., 2009; Howlett et al. 1999) and these compounds are occurring in natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009, 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran and the 4-fluorophenyl ring is 5.94 (5)°. The crystal packing (Fig. 2) is stabilized by aromatic ππ interactions between the benzene ring and the 4-fluorophenyl ring of an adjacent molecule. The Cg1-Cg2i distance is 3.632 (2) Å (Cg1 and Cg2 are the centroids of the C2-C7 benzene ring and the C9-C14 4-fluorophenyl ring, respectively). The crystal packing (Fig. 2) is further stabilized by a Br···O halogen bond between the bromine and the oxygen of the SO unit [Br···O2ii = 3.101 (1) Å; C–Br···O2 = 168.51 (6)°] (Politzer et al., 2007).

For the crystal structures of similar 2-(4-fluorophenyl)-5-halo-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Howlett et al. (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97-2 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97-2 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97-2 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ and C–Br···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 1, - z + 1; (ii) - x +1, - y + 1, - z.]
5-Bromo-3-ethylsulfinyl-2-(4-fluorophenyl)-1-benzofuran top
Crystal data top
C16H12BrFO2SZ = 2
Mr = 367.23F(000) = 368
Triclinic, P1Dx = 1.758 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2806 (5) ÅCell parameters from 8968 reflections
b = 9.4999 (6) Åθ = 2.3–27.5°
c = 10.8334 (6) ŵ = 3.12 mm1
α = 101.360 (3)°T = 100 K
β = 98.783 (3)°Block, colourless
γ = 104.771 (3)°0.30 × 0.26 × 0.18 mm
V = 693.87 (8) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3202 independent reflections
Radiation source: Rotating Anode3040 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.457, Tmax = 0.606l = 1414
12298 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C16H12BrFO2Sγ = 104.771 (3)°
Mr = 367.23V = 693.87 (8) Å3
Triclinic, P1Z = 2
a = 7.2806 (5) ÅMo Kα radiation
b = 9.4999 (6) ŵ = 3.12 mm1
c = 10.8334 (6) ÅT = 100 K
α = 101.360 (3)°0.30 × 0.26 × 0.18 mm
β = 98.783 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3202 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3040 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.606Rint = 0.033
12298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
3202 reflectionsΔρmin = 0.47 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.27979 (3)0.266152 (19)0.060167 (15)0.02863 (7)
S0.45510 (6)0.80533 (4)0.40790 (4)0.02178 (10)
O10.20904 (16)0.41876 (12)0.48809 (11)0.0196 (2)
O20.59525 (19)0.79599 (16)0.32187 (14)0.0323 (3)
F0.25971 (19)0.84421 (15)1.01927 (11)0.0399 (3)
C10.3410 (2)0.62021 (18)0.41607 (15)0.0189 (3)
C20.2982 (2)0.48799 (18)0.31181 (15)0.0186 (3)
C30.3185 (2)0.45934 (19)0.18372 (15)0.0207 (3)
H30.37120.53660.14680.025*
C40.2567 (2)0.31116 (19)0.11464 (16)0.0222 (3)
C50.1791 (2)0.19150 (19)0.16709 (17)0.0246 (3)
H50.14070.09330.11680.030*
C60.1596 (2)0.21979 (19)0.29435 (17)0.0233 (3)
H60.10910.14250.33190.028*
C70.2188 (2)0.36812 (18)0.36236 (15)0.0191 (3)
C80.2848 (2)0.57296 (17)0.51972 (16)0.0186 (3)
C90.2833 (2)0.64583 (19)0.65130 (15)0.0193 (3)
C100.2268 (2)0.5583 (2)0.73659 (17)0.0238 (3)
H100.19460.45420.70980.029*
C110.2185 (3)0.6250 (2)0.86028 (17)0.0272 (4)
H110.17860.56680.91650.033*
C120.2703 (3)0.7792 (2)0.89850 (17)0.0277 (4)
C130.3302 (3)0.8695 (2)0.81914 (18)0.0283 (4)
H130.36720.97360.84830.034*
C140.3342 (2)0.8021 (2)0.69475 (17)0.0243 (3)
H140.37150.86170.63900.029*
C150.2449 (3)0.8353 (2)0.31525 (17)0.0256 (3)
H15A0.28680.92300.28180.031*
H15B0.18360.74930.24250.031*
C160.0982 (3)0.8580 (2)0.39692 (19)0.0278 (4)
H16A0.15820.94360.46860.033*
H16B0.05390.77020.42820.033*
H16C0.01040.87450.34570.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03874 (12)0.02938 (11)0.01775 (10)0.01314 (8)0.00627 (7)0.00147 (7)
S0.02209 (19)0.01876 (19)0.0229 (2)0.00193 (15)0.00670 (15)0.00547 (15)
O10.0233 (5)0.0168 (5)0.0184 (5)0.0045 (4)0.0059 (4)0.0045 (4)
O20.0298 (6)0.0334 (7)0.0362 (7)0.0059 (5)0.0179 (6)0.0107 (6)
F0.0514 (7)0.0480 (7)0.0191 (5)0.0180 (6)0.0106 (5)0.0016 (5)
C10.0184 (7)0.0182 (7)0.0198 (7)0.0051 (6)0.0045 (6)0.0044 (6)
C20.0170 (7)0.0189 (7)0.0203 (8)0.0060 (6)0.0039 (6)0.0047 (6)
C30.0214 (7)0.0227 (8)0.0191 (8)0.0073 (6)0.0055 (6)0.0057 (6)
C40.0234 (7)0.0261 (8)0.0181 (8)0.0107 (6)0.0043 (6)0.0033 (6)
C50.0276 (8)0.0205 (8)0.0246 (8)0.0094 (7)0.0034 (6)0.0019 (6)
C60.0254 (8)0.0188 (8)0.0260 (8)0.0066 (6)0.0054 (6)0.0061 (6)
C70.0195 (7)0.0212 (8)0.0186 (7)0.0080 (6)0.0052 (6)0.0059 (6)
C80.0174 (7)0.0167 (7)0.0213 (8)0.0052 (6)0.0036 (6)0.0045 (6)
C90.0171 (7)0.0233 (8)0.0174 (7)0.0064 (6)0.0033 (5)0.0044 (6)
C100.0268 (8)0.0239 (8)0.0212 (8)0.0076 (7)0.0054 (6)0.0060 (6)
C110.0310 (9)0.0351 (10)0.0189 (8)0.0117 (7)0.0073 (7)0.0097 (7)
C120.0273 (8)0.0383 (10)0.0167 (8)0.0132 (7)0.0043 (6)0.0006 (7)
C130.0307 (9)0.0253 (9)0.0249 (9)0.0078 (7)0.0050 (7)0.0014 (7)
C140.0261 (8)0.0239 (8)0.0218 (8)0.0059 (6)0.0066 (6)0.0043 (6)
C150.0303 (8)0.0237 (8)0.0241 (8)0.0082 (7)0.0052 (7)0.0094 (7)
C160.0247 (8)0.0258 (9)0.0323 (10)0.0070 (7)0.0045 (7)0.0078 (7)
Geometric parameters (Å, º) top
Br—O2i3.101 (1)C6—H60.9300
Br—C41.901 (2)C8—C91.460 (2)
S—O21.491 (1)C9—C101.399 (2)
S—C11.769 (2)C9—C141.398 (2)
S—C151.816 (2)C10—C111.382 (2)
O1—C71.372 (2)C10—H100.9300
O1—C81.378 (2)C11—C121.375 (3)
F—C121.355 (2)C11—H110.9300
C1—C81.369 (2)C12—C131.371 (3)
C1—C21.444 (2)C13—C141.381 (2)
C2—C71.392 (2)C13—H130.9300
C2—C31.398 (2)C14—H140.9300
C3—C41.380 (2)C15—C161.517 (3)
C3—H30.9300C15—H15A0.9700
C4—C51.400 (2)C15—H15B0.9700
C5—C61.388 (2)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.378 (2)C16—H16C0.9600
C4—Br—O2i168.51 (6)C10—C9—C8119.77 (15)
O2—S—C1107.40 (8)C14—C9—C8121.70 (15)
O2—S—C15106.91 (8)C11—C10—C9120.65 (16)
C1—S—C1597.23 (8)C11—C10—H10119.7
C7—O1—C8107.06 (12)C9—C10—H10119.7
C8—C1—C2107.15 (14)C12—C11—C10118.61 (16)
C8—C1—S128.11 (13)C12—C11—H11120.7
C2—C1—S124.69 (12)C10—C11—H11120.7
C7—C2—C3119.18 (15)F—C12—C13118.78 (17)
C7—C2—C1105.14 (14)F—C12—C11118.47 (17)
C3—C2—C1135.68 (15)C13—C12—C11122.75 (17)
C4—C3—C2116.93 (15)C12—C13—C14118.37 (17)
C4—C3—H3121.5C12—C13—H13120.8
C2—C3—H3121.5C14—C13—H13120.8
C3—C4—C5123.31 (15)C13—C14—C9121.07 (16)
C3—C4—Br118.62 (13)C13—C14—H14119.5
C5—C4—Br118.07 (13)C9—C14—H14119.5
C6—C5—C4119.80 (16)C16—C15—S111.41 (12)
C6—C5—H5120.1C16—C15—H15A109.3
C4—C5—H5120.1S—C15—H15A109.3
C7—C6—C5116.67 (15)C16—C15—H15B109.3
C7—C6—H6121.7S—C15—H15B109.3
C5—C6—H6121.7H15A—C15—H15B108.0
O1—C7—C6125.37 (14)C15—C16—H16A109.5
O1—C7—C2110.52 (14)C15—C16—H16B109.5
C6—C7—C2124.10 (15)H16A—C16—H16B109.5
C1—C8—O1110.12 (14)C15—C16—H16C109.5
C1—C8—C9135.64 (15)H16A—C16—H16C109.5
O1—C8—C9114.23 (13)H16B—C16—H16C109.5
C10—C9—C14118.52 (15)
O2—S—C1—C8143.78 (15)C2—C1—C8—O10.09 (17)
C15—S—C1—C8105.92 (15)S—C1—C8—O1177.28 (11)
O2—S—C1—C233.17 (15)C2—C1—C8—C9178.63 (16)
C15—S—C1—C277.13 (14)S—C1—C8—C94.0 (3)
C8—C1—C2—C70.47 (17)C7—O1—C8—C10.32 (17)
S—C1—C2—C7177.02 (12)C7—O1—C8—C9179.35 (12)
C8—C1—C2—C3179.55 (17)C1—C8—C9—C10175.02 (17)
S—C1—C2—C33.0 (3)O1—C8—C9—C106.3 (2)
C7—C2—C3—C40.2 (2)C1—C8—C9—C146.0 (3)
C1—C2—C3—C4179.86 (17)O1—C8—C9—C14172.71 (14)
C2—C3—C4—C50.9 (2)C14—C9—C10—C111.1 (2)
C2—C3—C4—Br179.69 (11)C8—C9—C10—C11177.92 (15)
C3—C4—C5—C60.7 (3)C9—C10—C11—C121.2 (3)
Br—C4—C5—C6179.91 (13)C10—C11—C12—F179.22 (16)
C4—C5—C6—C70.3 (2)C10—C11—C12—C130.1 (3)
C8—O1—C7—C6179.18 (15)F—C12—C13—C14177.84 (16)
C8—O1—C7—C20.64 (16)C11—C12—C13—C141.5 (3)
C5—C6—C7—O1179.14 (15)C12—C13—C14—C91.6 (3)
C5—C6—C7—C21.1 (2)C10—C9—C14—C130.3 (2)
C3—C2—C7—O1179.33 (13)C8—C9—C14—C13179.32 (15)
C1—C2—C7—O10.68 (17)O2—S—C15—C16175.84 (12)
C3—C2—C7—C60.9 (2)C1—S—C15—C1673.45 (14)
C1—C2—C7—C6179.14 (15)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12BrFO2S
Mr367.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2806 (5), 9.4999 (6), 10.8334 (6)
α, β, γ (°)101.360 (3), 98.783 (3), 104.771 (3)
V3)693.87 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.457, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
12298, 3202, 3040
Rint0.033
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.01
No. of reflections3202
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.47

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97-2 (Sheldrick, 2008), SHELXL97-2 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds