metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­bis­[(1-methyl-1H-benzimidazol-2-yl)methanol-κ2N3,O]manganese(II)

aSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: zmh@mailbox.gxnu.edu.cn

(Received 12 January 2010; accepted 18 January 2010; online 23 January 2010)

The title complex, [Mn(N3)2(C9H10N2O)2], possesses crystallographically imposed twofold symmetry. The MnII atom is coordinated by four N atoms and two O atoms in a distorted octa­hedral geometry. The crystal packing is stabilized by strong inter­molecular O—H⋯N hydrogen bonds.

Related literature

For the synthesis of the ligand, see: van Albada et al. (1995[Albada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. J. & Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.]) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006[Zeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101-m2102.]); Zhou et al. (2007[Zhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15-m16.]); Alagna et al. (1984[Alagna, L., Hasnain, S. S., Piggott, B. & Williams, D. J. (1984). Biochem. J. 220, 591-595.]); Hamilton et al. (1979[Hamilton, G. J., Ferraro, J. R. & Sinn, E. (1979). J. Chem. Soc. Dalton Trans. pp. 515-519.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(N3)2(C9H10N2O)2]

  • Mr = 463.38

  • Monoclinic, C 2/c

  • a = 15.466 (3) Å

  • b = 7.5438 (16) Å

  • c = 18.095 (4) Å

  • β = 109.989 (4)°

  • V = 1984.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 173 K

  • 0.33 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.933

  • 4125 measured reflections

  • 1741 independent reflections

  • 1345 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.02

  • 1741 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

O1—Mn1 2.302 (2)
Mn1—N3 2.172 (3)
Mn1—N1 2.176 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N5ii 0.85 1.85 2.701 (4) 178
Symmetry code: (ii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coordinated modes of (1-methyl-1H-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng et al., 2006, Zhou et al., 2007). This feature is also preserved in the present manganese(II) complex.

In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N4O2Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to MnII atom, and N–N–N bond lengths and bond angle are close to compound [Cu(tbz)(N3)2]2(CH3OH)2 (tbz = bis(2-benzimidazolyl)propane) (Albada et al., 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).

Related literature top

For the synthesis of the ligand, see: Albada et al. (1995) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006); Zhou et al. (2007); Alagna et al. (1984); Hamilton et al. (1979).

Experimental top

(1-methyl-1H-benzimidazol-2-yl)methanol was purchased from a chemical supplier. This reagent (0.16 g, 1 mmol), manganese(II) nitrate hexahydrate (0.14 g, 0.5 mmol) and sodium azide (0.07 g, 1 mmol) were dissolved in water (10 ml) that was kept at about 333 K. Colorless blocks separated from the solution after one week.

Refinement top

The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2(1.5)Ueq(C, Cmethyl). The hydroxy H atom has been located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.85 (1) Å, and Uiso(H) = 1.2Ueq(O).

Structure description top

The coordinated modes of (1-methyl-1H-benzimidazol-2-yl)methanol ligand are similar to our previously repored benzimidazol-2-yl methanol from the structural point, the latter has been shown to bind to cobalt(II) as a neutral chelate (Zeng et al., 2006, Zhou et al., 2007). This feature is also preserved in the present manganese(II) complex.

In the title compound, the ligand chelates through the hydroxyl O and imino N atoms, resulting in a N4O2Mn octahedral geometry at the metal center (Fig. 1, Table 1), like that observed in copper (Hamilton et al., 1979) and nickel (Alagna et al., 1984) adducts. In this structure, the azide anion as a terminal ligand coordinated to MnII atom, and N–N–N bond lengths and bond angle are close to compound [Cu(tbz)(N3)2]2(CH3OH)2 (tbz = bis(2-benzimidazolyl)propane) (Albada et al., 1995).The complex possesses crystallographically imposed twofold symmetry. The crystal packing is stabilized by strong intermolecular O—H···N hydrogen bonds which extend along the crystallographic twofold rotation axis (Fig. 2, Table 2).

For the synthesis of the ligand, see: Albada et al. (1995) and literature cited therein. For the metal(II) complexes of a similar N-heterocycle, see: Zeng et al. (2006); Zhou et al. (2007); Alagna et al. (1984); Hamilton et al. (1979).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot of the [Mn(II)(N3)2(C9H10N2O)2] molecule at the 50% probability level; hydrogen atoms are drawn as sphere of arbitrary radius. Symmetry codes: (i) -x, y, -z + 1/2, for the unlabelled atoms.
[Figure 2] Fig. 2. Part of the hydrogen bonded chain along [010] direction. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y - 1, z.
Diazidobis[(1-methyl-1H-benzimidazol-2-yl)methanol- κ2N3,O]manganese(II) top
Crystal data top
[Mn(N3)2(C9H10N2O)2]F(000) = 956
Mr = 463.38Dx = 1.551 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1818 reflections
a = 15.466 (3) Åθ = 2.4–26.7°
b = 7.5438 (16) ŵ = 0.71 mm1
c = 18.095 (4) ÅT = 173 K
β = 109.989 (4)°Block, colorless
V = 1984.0 (7) Å30.33 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1741 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1618
Tmin = 0.801, Tmax = 0.933k = 88
4125 measured reflectionsl = 1521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0608P)2 + 4.1072P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Mn(N3)2(C9H10N2O)2]V = 1984.0 (7) Å3
Mr = 463.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.466 (3) ŵ = 0.71 mm1
b = 7.5438 (16) ÅT = 173 K
c = 18.095 (4) Å0.33 × 0.22 × 0.10 mm
β = 109.989 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1741 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
1345 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.933Rint = 0.029
4125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.46 e Å3
1741 reflectionsΔρmin = 0.29 e Å3
142 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

In Checkcif report, the following ALERTS were generated

PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 – N4.. 5.98 su Author response: It is due to electron shift or resonance (N=N–N or N–N=N) bond lengths appear shorter than expected, see: Albada et al. (1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12170 (15)0.1356 (3)0.26588 (12)0.0324 (5)
H10.12640.03430.28750.049*
Mn10.00000.32504 (9)0.25000.0247 (2)
N10.00030 (17)0.2562 (3)0.13315 (13)0.0228 (6)
N20.07803 (16)0.1833 (3)0.05480 (14)0.0226 (5)
N30.1101 (2)0.5198 (4)0.28397 (17)0.0405 (7)
N40.11891 (18)0.6678 (4)0.30523 (15)0.0324 (7)
N50.1360 (3)0.8099 (4)0.3311 (2)0.0545 (9)
C10.1524 (2)0.1270 (5)0.20037 (18)0.0316 (8)
H1A0.16980.00380.19280.038*
H1B0.20700.20370.20960.038*
C20.0761 (2)0.1879 (4)0.12911 (17)0.0226 (6)
C30.05362 (19)0.2995 (4)0.05571 (17)0.0208 (6)
C40.1407 (2)0.3733 (4)0.02570 (18)0.0257 (7)
H4A0.17450.40340.05900.031*
C50.1764 (2)0.4013 (4)0.05442 (18)0.0307 (7)
H5A0.23590.45200.07670.037*
C60.1269 (2)0.3569 (4)0.10337 (18)0.0331 (8)
H6A0.15380.37820.15830.040*
C70.0403 (2)0.2830 (4)0.07448 (18)0.0289 (7)
H7B0.00680.25260.10800.035*
C80.0045 (2)0.2554 (4)0.00618 (17)0.0230 (6)
C90.1533 (2)0.1183 (5)0.03086 (19)0.0309 (7)
H9A0.16170.00890.04190.046*
H9B0.21000.18140.06020.046*
H9C0.13870.13880.02560.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0388 (13)0.0343 (13)0.0242 (11)0.0082 (10)0.0111 (10)0.0071 (9)
Mn10.0313 (4)0.0266 (4)0.0185 (3)0.0000.0116 (3)0.000
N10.0244 (13)0.0266 (14)0.0183 (12)0.0014 (11)0.0087 (10)0.0004 (10)
N20.0221 (13)0.0260 (13)0.0238 (12)0.0008 (10)0.0129 (10)0.0026 (10)
N30.0522 (19)0.0308 (18)0.0451 (18)0.0144 (14)0.0254 (15)0.0073 (14)
N40.0325 (15)0.043 (2)0.0243 (14)0.0057 (14)0.0135 (12)0.0027 (13)
N50.081 (3)0.0340 (19)0.048 (2)0.0135 (18)0.0225 (19)0.0063 (16)
C10.0296 (17)0.0375 (19)0.0296 (17)0.0092 (14)0.0125 (14)0.0043 (14)
C20.0248 (16)0.0230 (16)0.0214 (14)0.0001 (13)0.0096 (12)0.0014 (12)
C30.0216 (15)0.0198 (15)0.0221 (14)0.0029 (12)0.0088 (12)0.0016 (11)
C40.0231 (16)0.0266 (17)0.0295 (16)0.0012 (13)0.0117 (13)0.0016 (13)
C50.0238 (16)0.0314 (18)0.0314 (17)0.0006 (14)0.0023 (14)0.0036 (14)
C60.0376 (19)0.036 (2)0.0205 (15)0.0087 (15)0.0031 (14)0.0024 (13)
C70.0333 (18)0.0334 (19)0.0235 (15)0.0070 (14)0.0140 (14)0.0023 (13)
C80.0233 (15)0.0240 (15)0.0237 (15)0.0033 (12)0.0106 (12)0.0022 (12)
C90.0273 (17)0.0376 (19)0.0330 (17)0.0039 (14)0.0170 (14)0.0043 (14)
Geometric parameters (Å, º) top
O1—C11.421 (4)C1—H1A0.9900
O1—Mn12.302 (2)C1—H1B0.9900
O1—H10.8500C3—C41.385 (4)
Mn1—N32.172 (3)C3—C81.399 (4)
Mn1—N3i2.172 (3)C4—C51.380 (4)
Mn1—N12.176 (2)C4—H4A0.9500
Mn1—N1i2.176 (2)C5—C61.395 (5)
Mn1—O1i2.302 (2)C5—H5A0.9500
N1—C21.314 (4)C6—C71.379 (5)
N1—C31.400 (4)C6—H6A0.9500
N2—C21.355 (4)C7—C81.388 (4)
N2—C81.389 (4)C7—H7B0.9500
N2—C91.459 (4)C9—H9A0.9800
N3—N41.174 (4)C9—H9B0.9800
N4—N51.163 (4)C9—H9C0.9800
C1—C21.492 (4)
C1—O1—Mn1114.60 (17)C2—C1—H1B110.0
C1—O1—H1110.0H1A—C1—H1B108.4
Mn1—O1—H1123.6N1—C2—N2113.0 (3)
N3—Mn1—N3i94.89 (17)N1—C2—C1122.2 (3)
N3—Mn1—N1100.23 (10)N2—C2—C1124.8 (3)
N3i—Mn1—N198.36 (10)C4—C3—C8120.8 (3)
N3—Mn1—N1i98.36 (10)C4—C3—N1130.3 (3)
N3i—Mn1—N1i100.23 (10)C8—C3—N1108.8 (3)
N1—Mn1—N1i152.37 (14)C5—C4—C3117.4 (3)
N3—Mn1—O1i169.59 (9)C5—C4—H4A121.3
N3i—Mn1—O1i81.74 (10)C3—C4—H4A121.3
N1—Mn1—O1i90.02 (9)C4—C5—C6121.4 (3)
N1i—Mn1—O1i72.72 (8)C4—C5—H5A119.3
N3—Mn1—O181.74 (10)C6—C5—H5A119.3
N3i—Mn1—O1169.59 (9)C7—C6—C5122.0 (3)
N1—Mn1—O172.72 (8)C7—C6—H6A119.0
N1i—Mn1—O190.02 (9)C5—C6—H6A119.0
O1i—Mn1—O1103.23 (12)C6—C7—C8116.5 (3)
C2—N1—C3105.6 (2)C6—C7—H7B121.8
C2—N1—Mn1116.39 (19)C8—C7—H7B121.8
C3—N1—Mn1136.2 (2)C7—C8—N2132.4 (3)
C2—N2—C8106.9 (2)C7—C8—C3121.9 (3)
C2—N2—C9126.4 (3)N2—C8—C3105.7 (2)
C8—N2—C9126.6 (2)N2—C9—H9A109.5
N4—N3—Mn1136.7 (3)N2—C9—H9B109.5
N5—N4—N3173.4 (4)H9A—C9—H9B109.5
O1—C1—C2108.4 (2)N2—C9—H9C109.5
O1—C1—H1A110.0H9A—C9—H9C109.5
C2—C1—H1A110.0H9B—C9—H9C109.5
O1—C1—H1B110.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N5ii0.851.852.701 (4)178
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(N3)2(C9H10N2O)2]
Mr463.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)15.466 (3), 7.5438 (16), 18.095 (4)
β (°) 109.989 (4)
V3)1984.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.33 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.801, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
4125, 1741, 1345
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.02
No. of reflections1741
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
O1—Mn12.302 (2)Mn1—N12.176 (2)
Mn1—N32.172 (3)Mn1—N1i2.176 (2)
Mn1—N3i2.172 (3)Mn1—O1i2.302 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N5ii0.851.852.701 (4)177.9
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

We thank Central South University and Guangxi Normal University for supporting this study.

References

First citationAlagna, L., Hasnain, S. S., Piggott, B. & Williams, D. J. (1984). Biochem. J. 220, 591–595.  CAS PubMed Web of Science Google Scholar
First citationAlbada, G. A. van, Lakin, M. T., Veldman, N., Spek, A. J. & Reedijk, J. (1995). Inorg. Chem. 34, 4910–4917.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationHamilton, G. J., Ferraro, J. R. & Sinn, E. (1979). J. Chem. Soc. Dalton Trans. pp. 515–519.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZeng, M.-H., Zhou, Y.-L. & Ng, S. W. (2006). Acta Cryst. E62, m2101–m2102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-L., Zeng, M.-H. & Ng, S. W. (2007). Acta Cryst. E63, m15–m16.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds