metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diguanidinium bis­­(μ-2-hy­droxy­propane-1,2,3-tri­carboxyl­ato)bis­­[di­aqua­zincate(II)] dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 December 2009; accepted 17 December 2009; online 9 January 2010)

The asymmetric unit of the title compound, (CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O, contains one-half of a centrosymmetric dizinc(II) complex anion, one guanidinium cation and one water mol­ecule. Each ZnII ion is hexa­coordinated by two citrate anions, one in a bidentate fashion and the second monodentate, and two water mol­ecules in a distorted octa­hedral geometry. Intra­molecular O—H⋯O hydrogen bonds add further stability to the mol­ecular structure. In the crystal structure, mol­ecules are linked into a three-dimensional framework by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to guanidine and citric acid, see: Raczyńska et al. (2003[Raczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem. 16, 91-106.]); Yamada et al. (2009[Yamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651-5655.]); Sigman et al. (1993[Sigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295-2316.]); Schuck (1934[Schuck, C. (1934). J. Nutrit. 7, 679-684.]); Sherman et al. (1936[Sherman, C. C., Mendel, L. B. & Smith, A. H. (1936). J. Biol. Chem. 113, 247-254.]). For applications of citric acid in industry and materials science, see: Blair et al. (1991[Blair, G., Staal, P., Haarmann & Reimer Corporation (1991). Citric Acid, in Encyclopedia of Chemical Technology, edited by J. I. Kroschwitz & M. Howe-Grant, pp. 354-380. New York: John Wiley & Sons Inc.]); Jiang et al. (2007[Jiang, Q., Song, L. J., Zhao, Y., Lu, X. Y., Zhu, T. Y., Qian, L., Ren, X. M. & Cai, Y. D. (2007). Mater. Lett. 61, 2749-2752.]). For related guanidinium structures, see: Al-Dajani et al. (2009a[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009a). Acta Cryst. E65, o2508-o2509.],b[Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1540-m1541.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O

  • Mr = 737.21

  • Monoclinic, C 2/c

  • a = 28.9405 (4) Å

  • b = 8.5708 (1) Å

  • c = 11.3395 (2) Å

  • β = 95.249 (1)°

  • V = 2800.89 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.593, Tmax = 0.734

  • 32332 measured reflections

  • 7693 independent reflections

  • 5495 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.05

  • 7693 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O6 0.91 1.87 2.6445 (13) 142
N1—H1N1⋯O1W 0.86 2.38 3.1607 (19) 150
N1—H2N1⋯O4 0.92 2.10 2.9855 (17) 161
N2—H1N2⋯O5i 0.88 2.12 2.9351 (18) 154
N2—H2N2⋯O1Wii 0.88 2.05 2.9077 (19) 166
N3—H1N3⋯O4i 0.86 2.29 3.1011 (18) 156
N3—H1N3⋯O5i 0.86 2.55 3.3221 (18) 150
N3—H2N3⋯O1 0.85 2.36 3.1788 (18) 162
O1W—H1W1⋯O2iii 0.80 1.97 2.7640 (15) 177
O1W—H2W1⋯O5iv 0.82 2.05 2.8568 (17) 170
O2W—H1W2⋯O1iii 0.84 1.88 2.7172 (12) 171
O2W—H2W2⋯O7v 0.76 1.86 2.6116 (13) 167
O3W—H1W3⋯O2iii 0.85 1.90 2.7215 (12) 163
O3W—H2W3⋯O7vi 0.74 1.92 2.6424 (12) 166
C5—H5B⋯O3Wvii 0.97 2.53 3.4943 (13) 172
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is found in the literature that an organism has the ability to synthesize citric acid. (Schuck, 1934; Sherman et al., 1936). Citric acid has many applications including use in the manufacture of detergents, shampoos, cosmetics and in chemical cleaning (Blair et al., 1991). It can also be used for the preparation of the catalyst LaNiO3 for the preparation of carbon nanotubes (Jiang et al., 2007).

Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism (Raczyńska et al., 2003; Yamada et al., 2009; Sigman et al., 1993).

The asymmetric unit of title compound contains one half of a dizinc(II) complex anion, one guanidinium cation and one water solvent molecule (Fig. 1). The anion lies across a crystallographic inversion center, the other half is symmetry generated [symmetry code: 1/2 - x, 1/2 - y, 1 - z]. The Zn1 and Zn2 ions are coordinated to four O atoms from two citrate anions and two water molecules to form a distorted octahedral geometry. Two citric acid molecules are deprotonated and two guanidine molecules protonated to yield the cation and anion. The geometrical parameters of the guanidinium cations agree with those previously reported (Al-Dajani et al., 2009a,b). An intramolecular O3—H1O3···O6 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

In crystal structure (Fig. 2), the ZnII complex anion and water molecules are linked into sheets parallel to the bc plane via intermoleculer O1W—H1W1···O2, O1W—H2W1···O5, O2W—H1W2···O1, O2W—H2W2···O7, O3W—H1W3···O2, O3W—H2W3···O7 and C5—H5B···O3W hydrogen bonds. The guanidinium cations are linked these sheets generating a three-dimensional framework through N—H···O hydrogen bonds (Table 1).

Related literature top

For general background to guanidine and citric acid, see: Raczyńska et al. (2003); Yamada et al. (2009); Sigman et al. (1993); Schuck (1934); Sherman et al. (1936). For applications of citric acid in industry and materials science, see: Blair et al. (1991); Jiang et al. (2007). For related guanidinium structures, see: Al-Dajani et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Citric acid (anhydrous) (0.02 mol, 3.85 g) was dissolved in THF in a flat bottom flask with magnetic stirrer. In a separating funnel, guanidine carbonate (0.005 mol, 0.9 g), 99% [H2NC(NH)NH2].2H2CO3 was dissolved in THF. The guanidine solution was added in small portions to the citric acid with stirring. At room temperature, zinc chloride (ZnCl2) (0.02 mol, 2.75 g) was added also with stirring. The reaction mixture was refluxed for 30 min. After cooling the mixture to room temperature, it was left stirring overnight. The resulting colourless crystals were filtered, washed with methanol and dried at 353 K.

Refinement top

N-bound and O-bound H atoms were located in a difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.2, 1.5Ueq(N, O). The remaining H atoms were positioned geometrically [C–H = 0.97 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C)].

Structure description top

Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is found in the literature that an organism has the ability to synthesize citric acid. (Schuck, 1934; Sherman et al., 1936). Citric acid has many applications including use in the manufacture of detergents, shampoos, cosmetics and in chemical cleaning (Blair et al., 1991). It can also be used for the preparation of the catalyst LaNiO3 for the preparation of carbon nanotubes (Jiang et al., 2007).

Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism (Raczyńska et al., 2003; Yamada et al., 2009; Sigman et al., 1993).

The asymmetric unit of title compound contains one half of a dizinc(II) complex anion, one guanidinium cation and one water solvent molecule (Fig. 1). The anion lies across a crystallographic inversion center, the other half is symmetry generated [symmetry code: 1/2 - x, 1/2 - y, 1 - z]. The Zn1 and Zn2 ions are coordinated to four O atoms from two citrate anions and two water molecules to form a distorted octahedral geometry. Two citric acid molecules are deprotonated and two guanidine molecules protonated to yield the cation and anion. The geometrical parameters of the guanidinium cations agree with those previously reported (Al-Dajani et al., 2009a,b). An intramolecular O3—H1O3···O6 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).

In crystal structure (Fig. 2), the ZnII complex anion and water molecules are linked into sheets parallel to the bc plane via intermoleculer O1W—H1W1···O2, O1W—H2W1···O5, O2W—H1W2···O1, O2W—H2W2···O7, O3W—H1W3···O2, O3W—H2W3···O7 and C5—H5B···O3W hydrogen bonds. The guanidinium cations are linked these sheets generating a three-dimensional framework through N—H···O hydrogen bonds (Table 1).

For general background to guanidine and citric acid, see: Raczyńska et al. (2003); Yamada et al. (2009); Sigman et al. (1993); Schuck (1934); Sherman et al. (1936). For applications of citric acid in industry and materials science, see: Blair et al. (1991); Jiang et al. (2007). For related guanidinium structures, see: Al-Dajani et al. (2009a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Atoms with suffix A are generated by the symmetry operation (1/2 - x, 1/2 - y, 1 - z).
[Figure 2] Fig. 2. The crystal packing of title compound, viewed down the c axis, showing the hydrogen-bonded (dashed lines) three-dimensional framework. Hydrogen atoms not involved in the hydrogen-bonding have been omitted for clarity.
Diguanidinium bis(µ-2-hydroxypropane-1,2,3-tricarboxylato)bis[diaquazincate(II)] dihydrate top
Crystal data top
(CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2OF(000) = 1520
Mr = 737.21Dx = 1.748 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9983 reflections
a = 28.9405 (4) Åθ = 2.5–34.8°
b = 8.5708 (1) ŵ = 1.81 mm1
c = 11.3395 (2) ÅT = 296 K
β = 95.249 (1)°Block, colourless
V = 2800.89 (7) Å30.32 × 0.30 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7693 independent reflections
Radiation source: fine-focus sealed tube5495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 38.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4850
Tmin = 0.593, Tmax = 0.734k = 1412
32332 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.5068P]
where P = (Fo2 + 2Fc2)/3
7693 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
(CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2OV = 2800.89 (7) Å3
Mr = 737.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.9405 (4) ŵ = 1.81 mm1
b = 8.5708 (1) ÅT = 296 K
c = 11.3395 (2) Å0.32 × 0.30 × 0.18 mm
β = 95.249 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5495 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.734Rint = 0.026
32332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
7693 reflectionsΔρmin = 0.29 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.322092 (4)0.394890 (14)0.631912 (11)0.02481 (4)
O10.33231 (4)0.37163 (9)0.45220 (8)0.03439 (19)
O20.36716 (3)0.20991 (10)0.33603 (8)0.03573 (18)
O30.31089 (3)0.15045 (9)0.60117 (7)0.02494 (14)
H1O30.28150.14280.56510.037*
O40.39328 (3)0.33281 (11)0.66307 (9)0.03675 (19)
O50.44700 (3)0.16069 (13)0.72462 (10)0.0474 (2)
O60.24882 (3)0.07623 (10)0.42434 (9)0.0365 (2)
O70.25557 (3)0.16794 (10)0.36365 (10)0.0427 (2)
C10.34724 (4)0.23880 (12)0.42612 (9)0.02427 (18)
C20.34175 (3)0.10406 (10)0.51507 (9)0.02214 (16)
C30.38848 (4)0.06848 (13)0.58412 (10)0.0288 (2)
H3A0.38440.02210.63340.035*
H3B0.41010.03930.52750.035*
C40.41101 (4)0.19654 (14)0.66293 (10)0.0295 (2)
C50.32367 (4)0.04392 (12)0.44989 (10)0.0273 (2)
H5A0.34100.05860.38140.033*
H5B0.33020.13250.50200.033*
C60.27248 (4)0.04513 (12)0.40863 (10)0.02705 (19)
C70.45073 (5)0.64963 (16)0.50364 (12)0.0382 (3)
N10.45132 (5)0.61025 (16)0.61676 (12)0.0511 (3)
H1N10.46440.66410.67510.061*
H2N10.43930.51870.64240.061*
N20.47821 (5)0.76043 (17)0.47097 (13)0.0552 (3)
H1N20.47830.78880.39660.066*
H2N20.50000.79450.52350.066*
N30.42259 (5)0.57429 (17)0.42351 (13)0.0547 (3)
H1N30.42080.62090.35590.066*
H2N30.40200.51350.44540.066*
O1W0.46013 (4)0.85648 (15)0.82510 (11)0.0525 (3)
H1W10.43350.83730.83060.079*
H2W10.45930.94700.80200.079*
O2W0.31354 (4)0.38177 (10)0.80498 (8)0.0388 (2)
H1W20.31630.46100.84920.058*
H2W20.29750.32360.83210.058*
O3W0.33513 (3)0.63182 (9)0.63707 (8)0.03042 (16)
H1W30.34940.66610.70040.046*
H2W30.31060.65610.63280.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02665 (6)0.02218 (6)0.02509 (7)0.00090 (4)0.00047 (4)0.00195 (4)
O10.0534 (5)0.0230 (3)0.0269 (4)0.0080 (3)0.0047 (4)0.0038 (3)
O20.0384 (4)0.0412 (4)0.0285 (4)0.0094 (4)0.0079 (3)0.0043 (3)
O30.0251 (3)0.0245 (3)0.0252 (3)0.0002 (3)0.0025 (3)0.0024 (3)
O40.0276 (4)0.0324 (4)0.0490 (5)0.0006 (3)0.0035 (3)0.0064 (4)
O50.0344 (5)0.0509 (6)0.0527 (6)0.0026 (4)0.0192 (4)0.0009 (5)
O60.0275 (4)0.0277 (4)0.0521 (5)0.0073 (3)0.0089 (4)0.0145 (4)
O70.0306 (4)0.0291 (4)0.0666 (7)0.0027 (3)0.0057 (4)0.0205 (4)
C10.0243 (4)0.0252 (4)0.0226 (4)0.0018 (3)0.0016 (3)0.0015 (3)
C20.0221 (4)0.0207 (4)0.0231 (4)0.0036 (3)0.0010 (3)0.0007 (3)
C30.0259 (5)0.0282 (4)0.0307 (5)0.0052 (4)0.0055 (4)0.0016 (4)
C40.0226 (4)0.0355 (5)0.0298 (5)0.0006 (4)0.0011 (4)0.0022 (4)
C50.0246 (4)0.0220 (4)0.0345 (5)0.0042 (3)0.0010 (4)0.0040 (4)
C60.0262 (4)0.0242 (4)0.0302 (5)0.0032 (4)0.0005 (4)0.0051 (4)
C70.0341 (6)0.0395 (6)0.0399 (7)0.0022 (5)0.0028 (5)0.0025 (5)
N10.0547 (8)0.0579 (8)0.0388 (7)0.0176 (6)0.0058 (6)0.0040 (5)
N20.0531 (7)0.0576 (8)0.0534 (8)0.0190 (6)0.0043 (6)0.0139 (6)
N30.0586 (8)0.0594 (8)0.0436 (7)0.0202 (7)0.0091 (6)0.0033 (6)
O1W0.0347 (5)0.0645 (7)0.0585 (7)0.0026 (5)0.0055 (5)0.0105 (6)
O2W0.0571 (6)0.0320 (4)0.0284 (4)0.0179 (4)0.0093 (4)0.0048 (3)
O3W0.0321 (4)0.0257 (3)0.0332 (4)0.0030 (3)0.0009 (3)0.0003 (3)
Geometric parameters (Å, º) top
Zn1—O2W2.0036 (9)C3—H3B0.9700
Zn1—O3W2.0653 (8)C5—C61.5123 (15)
Zn1—O12.0953 (9)C5—H5A0.9700
Zn1—O6i2.1071 (9)C5—H5B0.9700
Zn1—O42.1259 (9)C7—N21.3135 (18)
Zn1—O32.1436 (8)C7—N11.3250 (19)
O1—C11.2624 (12)C7—N31.3305 (18)
O2—C11.2430 (13)N1—H1N10.8653
O3—C21.4382 (12)N1—H2N10.9161
O3—H1O30.9125N2—H1N20.8782
O4—C41.2757 (15)N2—H2N20.8767
O5—C41.2389 (14)N3—H1N30.8616
O6—C61.2669 (12)N3—H2N30.8455
O6—Zn1i2.1071 (9)O1W—H1W10.7969
O7—C61.2498 (13)O1W—H2W10.8189
C1—C21.5510 (14)O2W—H1W20.8432
C2—C31.5302 (14)O2W—H2W20.7641
C2—C51.5355 (14)O3W—H1W30.8481
C3—C41.5237 (16)O3W—H2W30.7377
C3—H3A0.9700
O2W—Zn1—O3W93.79 (3)C2—C3—H3B107.8
O2W—Zn1—O1171.26 (3)H3A—C3—H3B107.2
O3W—Zn1—O194.55 (3)O5—C4—O4122.94 (11)
O2W—Zn1—O6i95.68 (4)O5—C4—C3116.42 (11)
O3W—Zn1—O6i93.63 (3)O4—C4—C3120.64 (9)
O1—Zn1—O6i86.38 (4)C6—C5—C2115.82 (8)
O2W—Zn1—O491.59 (4)C6—C5—H5A108.3
O3W—Zn1—O494.00 (4)C2—C5—H5A108.3
O1—Zn1—O485.24 (4)C6—C5—H5B108.3
O6i—Zn1—O4169.08 (3)C2—C5—H5B108.3
O2W—Zn1—O394.25 (3)H5A—C5—H5B107.4
O3W—Zn1—O3171.92 (3)O7—C6—O6123.51 (10)
O1—Zn1—O377.38 (3)O7—C6—C5117.91 (9)
O6i—Zn1—O386.39 (3)O6—C6—C5118.54 (9)
O4—Zn1—O384.96 (3)N2—C7—N1120.18 (13)
C1—O1—Zn1113.29 (7)N2—C7—N3120.45 (14)
C2—O3—Zn1106.65 (6)N1—C7—N3119.36 (13)
C2—O3—H1O3106.7C7—N1—H1N1124.8
Zn1—O3—H1O3105.3C7—N1—H2N1123.6
C4—O4—Zn1127.79 (7)H1N1—N1—H2N1111.5
C6—O6—Zn1i125.31 (7)C7—N2—H1N2121.7
O2—C1—O1124.51 (10)C7—N2—H2N2117.8
O2—C1—C2117.97 (9)H1N2—N2—H2N2119.7
O1—C1—C2117.48 (9)C7—N3—H1N3111.4
O3—C2—C3106.41 (8)C7—N3—H2N3120.1
O3—C2—C5110.47 (8)H1N3—N3—H2N3124.1
C3—C2—C5109.15 (8)H1W1—O1W—H2W1102.7
O3—C2—C1110.03 (7)Zn1—O2W—H1W2121.5
C3—C2—C1110.05 (9)Zn1—O2W—H2W2124.3
C5—C2—C1110.64 (9)H1W2—O2W—H2W2108.4
C4—C3—C2117.86 (9)Zn1—O3W—H1W3116.0
C4—C3—H3A107.8Zn1—O3W—H2W395.9
C2—C3—H3A107.8H1W3—O3W—H2W3110.5
C4—C3—H3B107.8
O3W—Zn1—O1—C1150.43 (8)O1—C1—C2—O312.55 (13)
O6i—Zn1—O1—C1116.20 (9)O2—C1—C2—C373.57 (12)
O4—Zn1—O1—C156.79 (8)O1—C1—C2—C3104.39 (11)
O3—Zn1—O1—C129.10 (8)O2—C1—C2—C547.13 (12)
O2W—Zn1—O3—C2143.52 (7)O1—C1—C2—C5134.91 (10)
O1—Zn1—O3—C233.95 (6)O3—C2—C3—C456.32 (12)
O6i—Zn1—O3—C2121.05 (6)C5—C2—C3—C4175.54 (10)
O4—Zn1—O3—C252.29 (6)C1—C2—C3—C462.86 (12)
O2W—Zn1—O4—C491.34 (10)Zn1—O4—C4—O5150.02 (10)
O3W—Zn1—O4—C4174.75 (10)Zn1—O4—C4—C330.55 (16)
O1—Zn1—O4—C480.50 (10)C2—C3—C4—O5174.68 (11)
O6i—Zn1—O4—C440.5 (3)C2—C3—C4—O45.86 (17)
O3—Zn1—O4—C42.78 (10)O3—C2—C5—C645.40 (12)
Zn1—O1—C1—O2160.08 (9)C3—C2—C5—C6162.07 (10)
Zn1—O1—C1—C217.74 (12)C1—C2—C5—C676.69 (12)
Zn1—O3—C2—C384.83 (8)Zn1i—O6—C6—O74.75 (18)
Zn1—O3—C2—C5156.82 (6)Zn1i—O6—C6—C5177.29 (8)
Zn1—O3—C2—C134.36 (9)C2—C5—C6—O7174.40 (11)
O2—C1—C2—O3169.49 (9)C2—C5—C6—O63.68 (16)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O60.911.872.6445 (13)142
N1—H1N1···O1W0.862.383.1607 (19)150
N1—H2N1···O40.922.102.9855 (17)161
N2—H1N2···O5ii0.882.122.9351 (18)154
N2—H2N2···O1Wiii0.882.052.9077 (19)166
N3—H1N3···O4ii0.862.293.1011 (18)156
N3—H1N3···O5ii0.862.553.3221 (18)150
N3—H2N3···O10.852.363.1788 (18)162
O1W—H1W1···O2iv0.801.972.7640 (15)177
O1W—H2W1···O5v0.822.052.8568 (17)170
O2W—H1W2···O1iv0.841.882.7172 (12)171
O2W—H2W2···O7vi0.761.862.6116 (13)167
O3W—H1W3···O2iv0.851.902.7215 (12)163
O3W—H2W3···O7i0.741.922.6424 (12)166
C5—H5B···O3Wvii0.972.533.4943 (13)172
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z1/2; (iii) x+1, y, z+3/2; (iv) x, y+1, z+1/2; (v) x, y+1, z; (vi) x, y, z+1/2; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula(CH6N3)2[Zn2(C6H5O7)2(H2O)2]·2H2O
Mr737.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)28.9405 (4), 8.5708 (1), 11.3395 (2)
β (°) 95.249 (1)
V3)2800.89 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.32 × 0.30 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.593, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
32332, 7693, 5495
Rint0.026
(sin θ/λ)max1)0.871
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections7693
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O60.91001.87002.6445 (13)142.00
N1—H1N1···O1W0.86002.38003.1607 (19)150.00
N1—H2N1···O40.92002.10002.9855 (17)161.00
N2—H1N2···O5i0.88002.12002.9351 (18)154.00
N2—H2N2···O1Wii0.88002.05002.9077 (19)166.00
N3—H1N3···O4i0.86002.29003.1011 (18)156.00
N3—H1N3···O5i0.86002.55003.3221 (18)150.00
N3—H2N3···O10.85002.36003.1788 (18)162.00
O1W—H1W1···O2iii0.80001.97002.7640 (15)177.00
O1W—H2W1···O5iv0.82002.05002.8568 (17)170.00
O2W—H1W2···O1iii0.84001.88002.7172 (12)171.00
O2W—H2W2···O7v0.76001.86002.6116 (13)167.00
O3W—H1W3···O2iii0.85001.90002.7215 (12)163.00
O3W—H2W3···O7vi0.74001.92002.6424 (12)166.00
C5—H5B···O3Wvii0.97002.53003.4943 (13)172.00
Symmetry codes: (i) x, y+1, z1/2; (ii) x+1, y, z+3/2; (iii) x, y+1, z+1/2; (iv) x, y+1, z; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: nornisah@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HHA gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811142). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.

References

First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009a). Acta Cryst. E65, o2508–o2509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1540–m1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlair, G., Staal, P., Haarmann & Reimer Corporation (1991). Citric Acid, in Encyclopedia of Chemical Technology, edited by J. I. Kroschwitz & M. Howe-Grant, pp. 354–380. New York: John Wiley & Sons Inc.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, Q., Song, L. J., Zhao, Y., Lu, X. Y., Zhu, T. Y., Qian, L., Ren, X. M. & Cai, Y. D. (2007). Mater. Lett. 61, 2749–2752.  Web of Science CrossRef CAS Google Scholar
First citationRaczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem. 16, 91–106.  Google Scholar
First citationSchuck, C. (1934). J. Nutrit. 7, 679–684.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherman, C. C., Mendel, L. B. & Smith, A. H. (1936). J. Biol. Chem. 113, 247–254.  CAS Google Scholar
First citationSigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295–2316.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651–5655.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds