organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-2-meth­oxy­imino-2-(4-nitro­benzo­yl)acetate

aBioMat-Physics Department, UNESP – Univ Estadual Paulista, 17033-360 Bauru, SP, Brazil, bInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, cDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@fc.unesp.br

(Received 7 January 2010; accepted 13 January 2010; online 20 January 2010)

The title mol­ecule, C12H12N2O6, features an E conformation about the oxime group. The methoxy­imino and ester residues are effectively coplanar with each other (r.m.s. deviation for the nine non-H atoms = 0.127 Å) and almost orthogonal [with dihedral angles of 99.44 (13) and −77.85 (13)°, respectively] to the carbonyl and nitro­phenyl groups which lie to either side of this central plane. The crystal structure is consolidated by C—H⋯O contacts.

Related literature

For background to the synthesis of chiral hydroxy­amino­acids and hydroxy­amino­alcohols, see: Corrêa & Moran (1999[Corrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221-14232.]); Kreutz et al. (1997[Kreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649-2653.], 2000[Kreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107-2115.]). For related structures, see: Caracelli et al. (2010[Caracelli, I., Trindade, A. C., Moran, P. J. S., Hinoue, L., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o137.]); Forsyth et al. (2006[Forsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654-o5655.]); Ramos Silva et al. (2004[Ramos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d'A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145-146.]). For the synthesis of the title compound, see: Buehler (1967[Buehler, E. (1967). J. Org. Chem. 32, 261-265.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O6

  • Mr = 280.24

  • Triclinic, [P \overline 1]

  • a = 7.5197 (1) Å

  • b = 7.5793 (1) Å

  • c = 12.3338 (2) Å

  • α = 83.264 (1)°

  • β = 73.731 (1)°

  • γ = 68.939 (1)°

  • V = 629.62 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.933, Tmax = 1.000

  • 9325 measured reflections

  • 2614 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.05

  • 2614 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.56 3.3853 (14) 148
C3—H3⋯O2ii 0.93 2.50 3.3950 (16) 162
C5—H5⋯O5iii 0.93 2.35 3.1856 (14) 150
C6—H6⋯O3iv 0.93 2.46 3.3514 (16) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+1, -z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In connection with studies involving the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, whereby α-ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-reduced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000), the title compound was prepared as an intermediary.

The molecular structure of the title compound is illustrated in Fig. 1, and the geometrical parameters are given in the Supplementary information and the archived CIF. The conformation about the oxime bond [N2C8 = 1.2790 (14) Å] is E. The methoxyimino moiety is effectively co-planar with the ester group, as seen in the sequence of O4-N2-C8-C9, N2-C8-C9-O5 and C8-C9-O6-C10 torsion angles of 177.54 (8), 6.76 (16) and 178.40 (9) °, respectively. While atom C7 lies in the mean plane of the ester group [O4-N2-C8-C7 = 2.17 (14) °], the carbonyl and nitrophenyl groups occupy positions almost orthogonal to the remaining atoms, as seen in the values of the N2-C8-C7-O3 and N2-C8-C7-C4 torsion angles of 99.44 (13) and -77.85 (13) °, respectively. The nitro group and the benzene ring to which it is attached are slightly twisted with respect to one another, with a dihedral angle of 8.54 (8)°. Globally, when viewed down the C7–C8 bond, the carbonyl-O3 atom lies to one side of the central plane and the nitrophenyl group to the other.

The crystal packing is dominated by C–H(aromatic)···O interactions involving the nitro-O2, carbonyl-O3 and oxime-O4 atoms to form layers in the ab plane (Table 1 and Fig. 2). These layers stack along [001] with interdigitation of the ethyl ester groups (Fig. 3), and C–H···O interactions involving the ester carbonyl-O5 atom.

The basic C(O)C(NOH)C(O)OC framework in the title compound is comparatively rare with only three other structures reported, namely the recently described Z-isomer of the title compound (Caracelli et al., 2010), 2-(hydroxyimino)-3-oxo-3-phenylpropionate, where E-conformations are found for each of the independent molecules (Ramos Silva et al., 2004), and benzyl 2-(hydroxyimino)acetoacetate, for which a Z conformation is found (Forsyth et al., 2006).

Related literature top

For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997); Kreutz et al. (2000). For related structures, see: Caracelli et al. (2010); Forsyth et al. (2006); Ramos Silva et al. (2004). For the synthesis of the title compound, see: Buehler (1967).

Experimental top

The title compound was prepared following a modified literature method (Buehler, 1967). Silver oxide (1.3 mmol) was slowly added with stirring to a solution of a mixture of ethyl (E)- and (Z)-2-hydroximino-3-(4-nitrophenyl)-3-oxopropanoate (2.25 mmol) and methyl iodide (5.6 mmol) in CH2Cl2 (30 ml), and cooled in a ice-water bath. The temperature was then raised to 301 K and the stirring maintained for 1 h. The precipitate formed was filtered off and washed with CH2Cl2. The solvent was evaporated to afford yellow crystals of a mixture of E:Z (90:10) isomers in 86% yield. They were separated by TLC chromatography on silica gel with 5% ethyl acetate/hexane. The principal fraction was shown by crystallographic analysis to be the E isomer; m.p. 367.6–368.0 K.

Refinement top

The H atoms were placed geometrically (C–H = 0.93–0.97 Å) and refined in the riding model approximation with Uiso(H) = 1.2Ueq(C-aromatic) and 1.5Ueq(C-methyl).

Structure description top

In connection with studies involving the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, whereby α-ketomethoxyimino compounds are reduced by sodium borohydride (Corrêa & Moran, 1999) and enantioselectively bio-reduced by whole cells of yeast (Kreutz et al., 1997; Kreutz et al., 2000), the title compound was prepared as an intermediary.

The molecular structure of the title compound is illustrated in Fig. 1, and the geometrical parameters are given in the Supplementary information and the archived CIF. The conformation about the oxime bond [N2C8 = 1.2790 (14) Å] is E. The methoxyimino moiety is effectively co-planar with the ester group, as seen in the sequence of O4-N2-C8-C9, N2-C8-C9-O5 and C8-C9-O6-C10 torsion angles of 177.54 (8), 6.76 (16) and 178.40 (9) °, respectively. While atom C7 lies in the mean plane of the ester group [O4-N2-C8-C7 = 2.17 (14) °], the carbonyl and nitrophenyl groups occupy positions almost orthogonal to the remaining atoms, as seen in the values of the N2-C8-C7-O3 and N2-C8-C7-C4 torsion angles of 99.44 (13) and -77.85 (13) °, respectively. The nitro group and the benzene ring to which it is attached are slightly twisted with respect to one another, with a dihedral angle of 8.54 (8)°. Globally, when viewed down the C7–C8 bond, the carbonyl-O3 atom lies to one side of the central plane and the nitrophenyl group to the other.

The crystal packing is dominated by C–H(aromatic)···O interactions involving the nitro-O2, carbonyl-O3 and oxime-O4 atoms to form layers in the ab plane (Table 1 and Fig. 2). These layers stack along [001] with interdigitation of the ethyl ester groups (Fig. 3), and C–H···O interactions involving the ester carbonyl-O5 atom.

The basic C(O)C(NOH)C(O)OC framework in the title compound is comparatively rare with only three other structures reported, namely the recently described Z-isomer of the title compound (Caracelli et al., 2010), 2-(hydroxyimino)-3-oxo-3-phenylpropionate, where E-conformations are found for each of the independent molecules (Ramos Silva et al., 2004), and benzyl 2-(hydroxyimino)acetoacetate, for which a Z conformation is found (Forsyth et al., 2006).

For background to the synthesis of chiral hydroxyaminoacids and hydroxyaminoalcohols, see: Corrêa & Moran (1999); Kreutz et al. (1997); Kreutz et al. (2000). For related structures, see: Caracelli et al. (2010); Forsyth et al. (2006); Ramos Silva et al. (2004). For the synthesis of the title compound, see: Buehler (1967).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the layer structure in the title compound, sustained by C–H···O contacts [the C–H···O contacts are shown as brown dashed lines; colour code: O, red; N, blue; C, grey; H, green].
[Figure 3] Fig. 3. A view along the b axis of the crystal packing of the title compound, highlighting the interdigitation of the ester groups [the C–H···O contacts are shown as brown dashed lines; colour code: O, red; N, blue; C, grey; H, green].
Ethyl (E)-2-methoxyimino-2-(4-nitrobenzoyl)acetate top
Crystal data top
C12H12N2O6Z = 2
Mr = 280.24F(000) = 292
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5197 (1) ÅCell parameters from 5430 reflections
b = 7.5793 (1) Åθ = 26.6–2.9°
c = 12.3338 (2) ŵ = 0.12 mm1
α = 83.264 (1)°T = 100 K
β = 73.731 (1)°Block, pale-yellow
γ = 68.939 (1)°0.35 × 0.25 × 0.08 mm
V = 629.62 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2614 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 26.6°, θmin = 1.7°
Absorption correction: multi scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.933, Tmax = 1.000k = 99
9325 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1834P]
where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H12N2O6γ = 68.939 (1)°
Mr = 280.24V = 629.62 (2) Å3
Triclinic, P1Z = 2
a = 7.5197 (1) ÅMo Kα radiation
b = 7.5793 (1) ŵ = 0.12 mm1
c = 12.3338 (2) ÅT = 100 K
α = 83.264 (1)°0.35 × 0.25 × 0.08 mm
β = 73.731 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2614 independent reflections
Absorption correction: multi scan
(SADABS; Sheldrick, 1996)
2310 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 1.000Rint = 0.018
9325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2614 reflectionsΔρmin = 0.24 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95878 (16)0.26376 (14)0.48218 (9)0.0180 (2)
C20.77279 (16)0.24949 (15)0.51100 (9)0.0190 (2)
H20.72410.20000.58100.023*
C30.66149 (16)0.31060 (15)0.43316 (9)0.0185 (2)
H30.53700.30030.44980.022*
C40.73587 (16)0.38808 (14)0.32919 (9)0.0174 (2)
C50.92289 (16)0.40168 (15)0.30321 (9)0.0195 (2)
H50.97110.45390.23410.023*
C61.03760 (16)0.33776 (15)0.37975 (9)0.0195 (2)
H61.16360.34440.36280.023*
C70.60888 (16)0.45924 (14)0.24893 (9)0.0173 (2)
C80.67583 (15)0.57310 (15)0.14594 (9)0.0175 (2)
C90.75507 (16)0.49578 (15)0.02915 (9)0.0192 (2)
C100.81887 (17)0.23916 (16)0.08355 (9)0.0209 (2)
H10B0.95880.21690.11330.025*
H10A0.74940.32370.13530.025*
C110.78050 (19)0.05568 (16)0.07074 (10)0.0251 (3)
H11B0.82550.00290.14300.038*
H11C0.64160.07940.04160.038*
H11A0.84990.02680.01940.038*
C120.55476 (19)1.00856 (16)0.25880 (10)0.0243 (3)
H12C0.47591.07820.20840.036*
H12A0.68271.02090.23360.036*
H12B0.49201.05750.33360.036*
N20.65628 (13)0.74693 (13)0.15091 (8)0.0189 (2)
N11.07936 (14)0.19686 (13)0.56457 (8)0.0204 (2)
O60.74864 (12)0.32311 (11)0.02858 (6)0.02006 (19)
O50.81359 (14)0.58238 (12)0.05260 (7)0.0283 (2)
O30.45219 (12)0.43609 (11)0.26469 (7)0.02198 (19)
O40.57531 (12)0.81146 (11)0.26006 (6)0.0221 (2)
O11.00183 (13)0.15085 (13)0.65930 (7)0.0300 (2)
O21.25168 (13)0.18865 (13)0.53367 (7)0.0285 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (6)0.0154 (5)0.0157 (5)0.0056 (4)0.0047 (4)0.0012 (4)
C20.0233 (6)0.0175 (5)0.0144 (5)0.0084 (4)0.0006 (4)0.0004 (4)
C30.0184 (5)0.0185 (5)0.0182 (5)0.0086 (4)0.0006 (4)0.0011 (4)
C40.0208 (5)0.0153 (5)0.0154 (5)0.0070 (4)0.0021 (4)0.0012 (4)
C50.0215 (5)0.0202 (5)0.0156 (5)0.0092 (4)0.0014 (4)0.0021 (4)
C60.0180 (5)0.0209 (5)0.0194 (5)0.0087 (4)0.0020 (4)0.0001 (4)
C70.0196 (5)0.0155 (5)0.0154 (5)0.0069 (4)0.0005 (4)0.0020 (4)
C80.0168 (5)0.0200 (5)0.0168 (5)0.0082 (4)0.0042 (4)0.0016 (4)
C90.0192 (5)0.0209 (5)0.0182 (5)0.0079 (4)0.0048 (4)0.0009 (4)
C100.0250 (6)0.0227 (5)0.0151 (5)0.0090 (4)0.0040 (4)0.0010 (4)
C110.0329 (7)0.0234 (6)0.0217 (6)0.0122 (5)0.0080 (5)0.0004 (5)
C120.0306 (6)0.0174 (5)0.0252 (6)0.0089 (5)0.0062 (5)0.0017 (4)
N20.0200 (5)0.0212 (5)0.0156 (5)0.0081 (4)0.0036 (4)0.0003 (4)
N10.0239 (5)0.0198 (5)0.0178 (5)0.0080 (4)0.0050 (4)0.0001 (4)
O60.0259 (4)0.0197 (4)0.0152 (4)0.0102 (3)0.0029 (3)0.0004 (3)
O50.0416 (5)0.0267 (4)0.0174 (4)0.0187 (4)0.0005 (4)0.0013 (3)
O30.0217 (4)0.0246 (4)0.0219 (4)0.0121 (3)0.0051 (3)0.0028 (3)
O40.0302 (4)0.0188 (4)0.0166 (4)0.0104 (3)0.0016 (3)0.0017 (3)
O10.0309 (5)0.0414 (5)0.0160 (4)0.0132 (4)0.0049 (4)0.0057 (4)
O20.0245 (4)0.0382 (5)0.0269 (5)0.0153 (4)0.0094 (4)0.0058 (4)
Geometric parameters (Å, º) top
C1—C61.3839 (15)C9—O51.2020 (14)
C1—C21.3839 (16)C9—O61.3278 (13)
C1—N11.4753 (14)C10—O61.4670 (13)
C2—C31.3798 (16)C10—C111.5011 (16)
C2—H20.9300C10—H10B0.9700
C3—C41.4000 (15)C10—H10A0.9700
C3—H30.9300C11—H11B0.9600
C4—C51.3910 (16)C11—H11C0.9600
C4—C71.4889 (15)C11—H11A0.9600
C5—C61.3851 (16)C12—O41.4442 (13)
C5—H50.9300C12—H12C0.9600
C6—H60.9300C12—H12A0.9600
C7—O31.2121 (14)C12—H12B0.9600
C7—C81.5194 (14)N2—O41.3797 (12)
C8—N21.2790 (14)N1—O11.2229 (12)
C8—C91.4965 (15)N1—O21.2244 (13)
C6—C1—C2123.25 (10)O6—C9—C8111.19 (9)
C6—C1—N1118.25 (10)O6—C10—C11107.57 (9)
C2—C1—N1118.51 (9)O6—C10—H10B110.2
C3—C2—C1118.23 (10)C11—C10—H10B110.2
C3—C2—H2120.9O6—C10—H10A110.2
C1—C2—H2120.9C11—C10—H10A110.2
C2—C3—C4120.00 (10)H10B—C10—H10A108.5
C2—C3—H3120.0C10—C11—H11B109.5
C4—C3—H3120.0C10—C11—H11C109.5
C5—C4—C3120.30 (10)H11B—C11—H11C109.5
C5—C4—C7121.09 (10)C10—C11—H11A109.5
C3—C4—C7118.59 (10)H11B—C11—H11A109.5
C6—C5—C4120.29 (10)H11C—C11—H11A109.5
C6—C5—H5119.9O4—C12—H12C109.5
C4—C5—H5119.9O4—C12—H12A109.5
C1—C6—C5117.91 (10)H12C—C12—H12A109.5
C1—C6—H6121.0O4—C12—H12B109.5
C5—C6—H6121.0H12C—C12—H12B109.5
O3—C7—C4122.79 (10)H12A—C12—H12B109.5
O3—C7—C8119.12 (10)C8—N2—O4111.55 (9)
C4—C7—C8118.03 (9)O1—N1—O2123.89 (10)
N2—C8—C9114.45 (9)O1—N1—C1118.03 (9)
N2—C8—C7122.66 (9)O2—N1—C1118.08 (9)
C9—C8—C7122.72 (9)C9—O6—C10114.57 (8)
O5—C9—O6125.40 (10)N2—O4—C12108.40 (8)
O5—C9—C8123.40 (10)
C6—C1—C2—C30.61 (16)O3—C7—C8—C975.55 (14)
N1—C1—C2—C3179.38 (9)C4—C7—C8—C9107.17 (12)
C1—C2—C3—C41.27 (15)N2—C8—C9—O56.76 (16)
C2—C3—C4—C50.82 (16)C7—C8—C9—O5177.87 (11)
C2—C3—C4—C7177.73 (9)N2—C8—C9—O6172.26 (9)
C3—C4—C5—C60.35 (16)C7—C8—C9—O63.10 (14)
C7—C4—C5—C6178.85 (10)C9—C8—N2—O4177.54 (8)
C2—C1—C6—C50.52 (16)C7—C8—N2—O42.17 (14)
N1—C1—C6—C5179.49 (9)C6—C1—N1—O1172.19 (10)
C4—C5—C6—C10.99 (16)C2—C1—N1—O17.82 (14)
C5—C4—C7—O3173.89 (10)C6—C1—N1—O28.63 (15)
C3—C4—C7—O37.58 (16)C2—C1—N1—O2171.36 (10)
C5—C4—C7—C88.93 (15)O5—C9—O6—C100.60 (16)
C3—C4—C7—C8169.60 (9)C8—C9—O6—C10178.40 (9)
O3—C7—C8—N299.44 (13)C11—C10—O6—C9173.74 (9)
C4—C7—C8—N277.85 (13)C8—N2—O4—C12179.06 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.563.3853 (14)148
C3—H3···O2ii0.932.503.3950 (16)162
C5—H5···O5iii0.932.353.1856 (14)150
C6—H6···O3iv0.932.463.3514 (16)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O6
Mr280.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5197 (1), 7.5793 (1), 12.3338 (2)
α, β, γ (°)83.264 (1), 73.731 (1), 68.939 (1)
V3)629.62 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.25 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.933, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9325, 2614, 2310
Rint0.018
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.05
No. of reflections2614
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999), PARST (Nardelli, 1995) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.563.3853 (14)148
C3—H3···O2ii0.932.503.3950 (16)162
C5—H5···O5iii0.932.353.1856 (14)150
C6—H6···O3iv0.932.463.3514 (16)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

We thank FAPESP, CNPq and CAPES for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuehler, E. (1967). J. Org. Chem. 32, 261–265.  CrossRef CAS Web of Science Google Scholar
First citationCaracelli, I., Trindade, A. C., Moran, P. J. S., Hinoue, L., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCorrêa, I. R. & Moran, P. J. S. (1999). Tetrahedron, 55, 14221–14232.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForsyth, C. M., Langford, S. J. & Lee, K. A. (2006). Acta Cryst. E62, o5654–o5655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKreutz, O. C., Moran, P. J. S. & Rodrigues, J. A. R. (1997). Tetrahedron Asymmetry, 8, 2649–2653.  CrossRef CAS Web of Science Google Scholar
First citationKreutz, O. C., Segura, R. C. M., Rodrigues, J. A. R. & Moran, P. J. S. (2000). Tetrahedron Asymmetry, 11, 2107–2115.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRamos Silva, M., Matos Beja, A., Paixão, J. A., Lopes, S. H., Cabral, A. M. T. D. P. V., d'A. Rocha Gonsalves, A. M. & Sobral, A. J. F. N. (2004). Z. Kristallogr. New Cryst. Struct. 219, 145–146.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds