supplementary materials


Acta Cryst. (2010). E66, o371    [ doi:10.1107/S160053680905586X ]

N-(4-Methyl-2-pyridyl)-p-toluidine

Z. A. Fairuz, Z. Aiyub, Z. Abdullah and S. W. Ng

Abstract top

In the title compound, C13H14N2, the dihedral angle between the aromatic rings is 48.1 (1)° and the bridging C-N-C bond angle is 127.24 (12)°. In the crystal, intermolecular N-H...N hydrogen bonding about a center of inversion generates a hydrogen-bonded dimer.

Related literature top

For N-(2-pyridyl)-4-toluidine, see: Fairuz et al. (2008).

Experimental top

2-Chloro-4-methylpyridine (1 ml, 0.01 mol) and p-toluidine (1.2 g, 0.01 mol) were heated for 4 h. The product was dissolved in water and the solution extracted with ether. The ether extract was dried over sodium sulfate. Evaporation of the solvent gave large blocks of dark brown crystals. The crystals, when the outer parts were removed, were colorless.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; its temperature factor was refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded C13H14N2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Dashed lines denote hydrogen bonds.
N-(4-Methyl-2-pyridyl)-p-toluidine top
Crystal data top
C13H14N2F(000) = 424
Mr = 198.26Dx = 1.188 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2289 reflections
a = 10.9385 (11) Åθ = 2.5–28.1°
b = 7.5708 (8) ŵ = 0.07 mm1
c = 13.4372 (14) ÅT = 295 K
β = 95.246 (2)°Irregular block, colorless
V = 1108.1 (2) Å30.45 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1797 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
graphiteθmax = 27.5°, θmin = 2.3°
ω scansh = 1413
6758 measured reflectionsk = 99
2528 independent reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.1529P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2528 reflectionsΔρmax = 0.17 e Å3
143 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (6)
Crystal data top
C13H14N2V = 1108.1 (2) Å3
Mr = 198.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9385 (11) ŵ = 0.07 mm1
b = 7.5708 (8) ÅT = 295 K
c = 13.4372 (14) Å0.45 × 0.40 × 0.30 mm
β = 95.246 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1797 reflections with I > 2σ(I)
6758 measured reflectionsRint = 0.024
2528 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142Δρmax = 0.17 e Å3
S = 1.05Δρmin = 0.13 e Å3
2528 reflectionsAbsolute structure: ?
143 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51269 (11)0.54344 (19)0.64065 (9)0.0571 (4)
H10.4682 (13)0.546 (2)0.5832 (8)0.063 (5)*
N20.66732 (12)0.46482 (18)0.54571 (9)0.0554 (4)
C10.78715 (15)0.4383 (2)0.53779 (12)0.0642 (5)
H1A0.81070.40720.47540.077*
C20.87740 (14)0.4535 (2)0.61487 (13)0.0619 (4)
H20.95880.42880.60520.074*
C30.84502 (13)0.50645 (19)0.70755 (11)0.0490 (4)
C40.72299 (13)0.53940 (19)0.71698 (11)0.0471 (3)
H40.69850.57880.77760.056*
C50.63566 (13)0.51384 (18)0.63552 (10)0.0458 (3)
C60.93890 (14)0.5264 (2)0.79563 (12)0.0607 (4)
H6A0.91680.62390.83600.091*
H6B1.01800.54790.77250.091*
H6C0.94180.42010.83470.091*
C70.45006 (12)0.55349 (19)0.72722 (10)0.0447 (3)
C80.35038 (12)0.6665 (2)0.72803 (11)0.0516 (4)
H80.32940.73850.67310.062*
C90.28208 (13)0.6735 (2)0.80914 (11)0.0547 (4)
H90.21530.74980.80770.066*
C100.31070 (13)0.5694 (2)0.89293 (11)0.0526 (4)
C110.41089 (13)0.4573 (2)0.89151 (11)0.0502 (4)
H110.43220.38600.94670.060*
C120.47974 (13)0.44843 (19)0.81091 (10)0.0477 (4)
H120.54640.37190.81240.057*
C130.23520 (17)0.5750 (3)0.98106 (13)0.0757 (5)
H13A0.16310.64520.96460.113*
H13B0.28290.62621.03730.113*
H13C0.21150.45720.99740.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0418 (7)0.0866 (10)0.0424 (7)0.0084 (6)0.0001 (5)0.0006 (6)
N20.0492 (7)0.0675 (8)0.0496 (7)0.0037 (6)0.0048 (5)0.0037 (6)
C10.0536 (9)0.0824 (12)0.0583 (9)0.0073 (8)0.0136 (7)0.0093 (8)
C20.0426 (8)0.0744 (11)0.0698 (10)0.0060 (7)0.0104 (7)0.0040 (8)
C30.0433 (8)0.0435 (8)0.0599 (9)0.0004 (6)0.0025 (6)0.0045 (6)
C40.0439 (7)0.0494 (8)0.0479 (7)0.0008 (6)0.0049 (6)0.0010 (6)
C50.0427 (7)0.0476 (8)0.0471 (7)0.0022 (6)0.0049 (6)0.0029 (6)
C60.0435 (8)0.0664 (10)0.0706 (10)0.0005 (7)0.0032 (7)0.0044 (8)
C70.0363 (7)0.0533 (8)0.0434 (7)0.0015 (6)0.0023 (5)0.0024 (6)
C80.0424 (7)0.0570 (9)0.0542 (8)0.0033 (6)0.0022 (6)0.0070 (7)
C90.0411 (7)0.0585 (9)0.0643 (9)0.0052 (6)0.0031 (6)0.0040 (7)
C100.0452 (8)0.0625 (9)0.0500 (8)0.0080 (7)0.0034 (6)0.0102 (7)
C110.0479 (8)0.0559 (9)0.0450 (7)0.0082 (6)0.0047 (6)0.0031 (6)
C120.0408 (7)0.0497 (8)0.0512 (8)0.0021 (6)0.0036 (6)0.0022 (6)
C130.0698 (11)0.0969 (14)0.0623 (10)0.0047 (10)0.0172 (8)0.0109 (10)
Geometric parameters (Å, °) top
N1—C51.3716 (18)C6—H6C0.9600
N1—C71.4051 (18)C7—C81.3867 (19)
N1—H10.875 (9)C7—C121.391 (2)
N2—C11.340 (2)C8—C91.378 (2)
N2—C51.3380 (18)C8—H80.9300
C1—C21.369 (2)C9—C101.386 (2)
C1—H1A0.9300C9—H90.9300
C2—C31.385 (2)C10—C111.388 (2)
C2—H20.9300C10—C131.505 (2)
C3—C41.375 (2)C11—C121.376 (2)
C3—C61.502 (2)C11—H110.9300
C4—C51.399 (2)C12—H120.9300
C4—H40.9300C13—H13A0.9600
C6—H6A0.9600C13—H13B0.9600
C6—H6B0.9600C13—H13C0.9600
C5—N1—C7127.24 (12)C8—C7—C12118.16 (13)
C5—N1—H1115.4 (11)C8—C7—N1118.89 (13)
C7—N1—H1117.1 (11)C12—C7—N1122.87 (13)
C1—N2—C5116.68 (13)C9—C8—C7120.90 (13)
N2—C1—C2124.77 (15)C9—C8—H8119.5
N2—C1—H1A117.6C7—C8—H8119.5
C2—C1—H1A117.6C8—C9—C10121.47 (14)
C1—C2—C3118.61 (14)C8—C9—H9119.3
C1—C2—H2120.7C10—C9—H9119.3
C3—C2—H2120.7C9—C10—C11117.16 (14)
C4—C3—C2117.75 (14)C9—C10—C13121.57 (15)
C4—C3—C6120.58 (14)C11—C10—C13121.26 (15)
C2—C3—C6121.67 (14)C12—C11—C10122.03 (14)
C3—C4—C5120.13 (13)C12—C11—H11119.0
C3—C4—H4119.9C10—C11—H11119.0
C5—C4—H4119.9C11—C12—C7120.27 (13)
N2—C5—N1115.25 (12)C11—C12—H12119.9
N2—C5—C4121.97 (13)C7—C12—H12119.9
N1—C5—C4122.73 (13)C10—C13—H13A109.5
C3—C6—H6A109.5C10—C13—H13B109.5
C3—C6—H6B109.5H13A—C13—H13B109.5
H6A—C6—H6B109.5C10—C13—H13C109.5
C3—C6—H6C109.5H13A—C13—H13C109.5
H6A—C6—H6C109.5H13B—C13—H13C109.5
H6B—C6—H6C109.5
C5—N2—C1—C21.7 (3)C5—N1—C7—C8146.94 (15)
N2—C1—C2—C32.5 (3)C5—N1—C7—C1236.3 (2)
C1—C2—C3—C40.6 (2)C12—C7—C8—C90.5 (2)
C1—C2—C3—C6179.91 (16)N1—C7—C8—C9176.39 (13)
C2—C3—C4—C52.0 (2)C7—C8—C9—C100.5 (2)
C6—C3—C4—C5177.51 (13)C8—C9—C10—C110.2 (2)
C1—N2—C5—N1178.72 (14)C8—C9—C10—C13179.16 (15)
C1—N2—C5—C41.1 (2)C9—C10—C11—C120.0 (2)
C7—N1—C5—N2163.28 (14)C13—C10—C11—C12178.95 (14)
C7—N1—C5—C419.1 (2)C10—C11—C12—C70.0 (2)
C3—C4—C5—N23.0 (2)C8—C7—C12—C110.3 (2)
C3—C4—C5—N1179.59 (14)N1—C7—C12—C11176.47 (13)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.87 (1)2.18 (1)3.041 (2)170 (2)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.87 (1)2.18 (1)3.041 (2)170 (2)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Acknowledgements top

We thank the University of Malaya (grant No. RG027/09AFR, PS374/09 A) for supporting this study.

references
References top

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2441.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). publCIF. In preparation.