organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-6,6-ethyl­enedisulfanediyl-7-meth­oxy­methyl-1,2,3,4,5,6-hexa­hydro-1,5-methano­azocino[4,3-b]indol-3-one

aKarabük University, Department of Physics, 78050 Karabük, Turkey, bAtatürk University, Department of Chemistry, 22240 Erzurum, Turkey, cHacettepe University, Department of Chemistry Education, Faculty of Education, 06800 Beytepe, Ankara, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 January 2010; accepted 6 January 2010; online 9 January 2010)

The title compound, C20H24N2O2S2, consists of a tetra­cyclic ring system containing an azocino skeleton with ethyl, dithiol­ane and methoxy­methyl groups as substituents. The benzene and five-membered rings are nearly coplanar, with a dihedral angle of 2.78 (11)°. The dithiol­ane ring adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains nearly parallel to the c axis. Two C—H⋯π inter­actions are also present.

Related literature

For considerations of the hexahydro-1,5-methanoazo­cino[4,3-b]indole core structure as a synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interest, see: Hesse (2002[Hesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich, New York: Verlag Helvetica Chimica Acta, Wiley.]); Bosch & Bonjoch (1988[Bosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.], 2007[Hökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.]); Uludağ et al. (2006[Uludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem. 43, 585-591.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2S2

  • Mr = 388.53

  • Monoclinic, P 21 /c

  • a = 14.0409 (3) Å

  • b = 6.8916 (2) Å

  • c = 20.2820 (4) Å

  • β = 109.783 (2)°

  • V = 1846.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.910, Tmax = 0.941

  • 24759 measured reflections

  • 3794 independent reflections

  • 2746 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.161

  • S = 1.05

  • 3794 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O1i 0.96 2.43 3.365 (5) 165
C11—H11⋯Cg1ii 0.93 2.80 3.569 (4) 141
C16—H16ACg1iii 0.96 2.66 3.514 (5) 148
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z. Cg1 is the centroid of the C7A/C8–C11/C11A ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occurring compounds such as strychnine, a consulvant poison.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006) and 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic system containing an azocino skeleton with ethyl, dithiolane and methoxy methylene groups as substituents at positions N2, 6 and N7, respectively. The bonds N7—C6a [1.398 (3) Å] and N7—C7a [1.387 (3) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å] and (V) [1.377 (3) and 1.376 (3) Å]. In all four structures atom N7 is substituted. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 2.78 (11)°. Rings C (C1/C11b/C6a/C6/C5/C12), D (C1/N2/C3/C4/C5/C12) and E (C6/S1/S2/C13/C14) are, of course, not planar. Atom C12 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by -0.718 (3) Å and 0.747 (3) Å, respectively where the dihedral angle between planes of F and G is F/G = 68.92 (10)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C12) and the planes of F and G are 54.95 (20)° and 56.61 (20)°, respectively. Ring E has a local pseudo-mirror plane running through C13 and the midpoint of the C6—S2 bond. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.729 (3) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to c axis (Fig. 2), in which they may be effective in the stabilization of the structure. There are also two C—H···π interactions (Table 1).

Related literature top

For general background, see: Hesse (2002); Bosch & Bonjoch (1988); Saxton (1983). For related structures, see: Hökelek et al. (2004, 2006, 2007); Uludağ et al. (2006).

Experimental top

The title compound, (I), was prepared from sodium hydride (48.0 mg, 2.00 mmol) and 6-(1,3-dithiolan-2-yl)-1,2,3,4,5,6-hexahydro-1,5-methano-azocino[4,3–6] indole-3-one (500.0 mg, 1.38 mmol) in THF (40 ml) and bromoethane (5 ml). The mixture was heated at reflux for 4 h under nitrogen atmosphere. Later the mixture was cooled in an ice bath and methanol (5 ml) and water (25 ml) were added. After extraction with ethyl acetate (30 ml), the organic layer was dried with Na2SO4 and the solvent was evaporated. The residue was crystallized from aceton (yield; 450.0 mg, 83%), m.p. 469 K.

Structure description top

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occurring compounds such as strychnine, a consulvant poison.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006) and 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic system containing an azocino skeleton with ethyl, dithiolane and methoxy methylene groups as substituents at positions N2, 6 and N7, respectively. The bonds N7—C6a [1.398 (3) Å] and N7—C7a [1.387 (3) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å] and (V) [1.377 (3) and 1.376 (3) Å]. In all four structures atom N7 is substituted. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 2.78 (11)°. Rings C (C1/C11b/C6a/C6/C5/C12), D (C1/N2/C3/C4/C5/C12) and E (C6/S1/S2/C13/C14) are, of course, not planar. Atom C12 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by -0.718 (3) Å and 0.747 (3) Å, respectively where the dihedral angle between planes of F and G is F/G = 68.92 (10)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C12) and the planes of F and G are 54.95 (20)° and 56.61 (20)°, respectively. Ring E has a local pseudo-mirror plane running through C13 and the midpoint of the C6—S2 bond. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.729 (3) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to c axis (Fig. 2), in which they may be effective in the stabilization of the structure. There are also two C—H···π interactions (Table 1).

For general background, see: Hesse (2002); Bosch & Bonjoch (1988); Saxton (1983). For related structures, see: Hökelek et al. (2004, 2006, 2007); Uludağ et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Ethyl-6,6-ethylenedisulfanediyl-7-methoxymethyl-1,2,3,4,5,6-hexahydro-1,5- methanoazocino[4,3-b]indol-3-one top
Crystal data top
C20H24N2O2S2F(000) = 824
Mr = 388.53Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6800 reflections
a = 14.0409 (3) Åθ = 2.1–26.4°
b = 6.8916 (2) ŵ = 0.31 mm1
c = 20.2820 (4) ÅT = 294 K
β = 109.783 (2)°Block, colorless
V = 1846.74 (8) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3794 independent reflections
Radiation source: fine-focus sealed tube2746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1717
Tmin = 0.910, Tmax = 0.941k = 87
24759 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.9643P]
where P = (Fo2 + 2Fc2)/3
3794 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H24N2O2S2V = 1846.74 (8) Å3
Mr = 388.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0409 (3) ŵ = 0.31 mm1
b = 6.8916 (2) ÅT = 294 K
c = 20.2820 (4) Å0.35 × 0.25 × 0.20 mm
β = 109.783 (2)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3794 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2746 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.941Rint = 0.083
24759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.05Δρmax = 0.61 e Å3
3794 reflectionsΔρmin = 0.33 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47776 (6)0.49118 (12)0.40721 (4)0.0511 (2)
S20.44792 (6)0.89818 (12)0.35693 (4)0.0509 (2)
O10.2345 (2)0.9462 (4)0.44738 (13)0.0768 (8)
O20.23070 (18)0.8019 (4)0.09759 (11)0.0689 (7)
C10.2432 (2)0.4188 (4)0.22142 (14)0.0436 (7)
H10.21040.29150.21140.052*
N20.20617 (18)0.5406 (4)0.15768 (11)0.0473 (6)
C30.2592 (2)0.6945 (5)0.14953 (15)0.0515 (8)
C40.3593 (2)0.7400 (5)0.20602 (15)0.0538 (8)
H4A0.35090.86000.22840.065*
H4B0.40840.76490.18310.065*
C50.4061 (2)0.5879 (4)0.26479 (14)0.0434 (7)
H50.47820.57550.27090.052*
C60.3979 (2)0.6464 (4)0.33652 (13)0.0407 (6)
C6A0.2908 (2)0.6149 (4)0.33343 (14)0.0418 (6)
N70.25017 (17)0.6624 (4)0.38550 (11)0.0436 (6)
C7A0.1539 (2)0.5828 (4)0.36673 (15)0.0442 (7)
C80.0862 (2)0.5820 (5)0.40350 (17)0.0528 (8)
H80.10080.64560.44620.063*
C90.0033 (3)0.4828 (5)0.37369 (19)0.0591 (9)
H90.04990.47830.39710.071*
C100.0259 (2)0.3890 (5)0.30934 (18)0.0576 (8)
H100.08760.32510.29050.069*
C110.0409 (2)0.3887 (5)0.27301 (16)0.0509 (7)
H110.02510.32570.23010.061*
C11A0.1336 (2)0.4859 (4)0.30238 (14)0.0413 (6)
C11B0.2214 (2)0.5078 (4)0.28250 (14)0.0401 (6)
C120.3567 (2)0.3922 (4)0.24135 (15)0.0469 (7)
H12A0.37320.34520.20150.056*
H12B0.38070.29840.27900.056*
C130.5895 (2)0.6397 (5)0.42991 (17)0.0583 (8)
H13A0.63730.60000.47480.070*
H13B0.62180.62710.39480.070*
C140.5567 (2)0.8471 (6)0.43355 (17)0.0620 (9)
H14A0.61160.93480.43530.074*
H14B0.53960.86600.47560.074*
C150.2919 (2)0.7819 (5)0.44770 (15)0.0497 (7)
H15A0.29680.70470.48870.060*
H15B0.35980.82160.45140.060*
C160.2197 (4)1.0751 (6)0.3929 (2)0.0853 (13)
H16A0.17541.17720.39680.128*
H16B0.18981.00860.34920.128*
H16C0.28351.12930.39480.128*
C170.1124 (2)0.4840 (5)0.10217 (16)0.0575 (9)
H17A0.08240.59740.07460.069*
H17B0.06470.43430.12320.069*
C180.1315 (3)0.3308 (6)0.05469 (17)0.0741 (11)
H18A0.06820.28790.02190.111*
H18B0.16610.22270.08240.111*
H18C0.17250.38460.02970.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0460 (4)0.0572 (5)0.0457 (4)0.0018 (3)0.0099 (3)0.0075 (3)
S20.0487 (4)0.0488 (5)0.0541 (5)0.0058 (3)0.0160 (3)0.0024 (3)
O10.100 (2)0.0602 (17)0.0658 (16)0.0158 (15)0.0232 (14)0.0083 (12)
O20.0691 (15)0.0801 (19)0.0538 (13)0.0012 (13)0.0160 (11)0.0208 (12)
C10.0472 (16)0.0431 (17)0.0419 (15)0.0030 (13)0.0168 (12)0.0012 (12)
N20.0470 (13)0.0569 (17)0.0367 (12)0.0035 (12)0.0125 (10)0.0003 (11)
C30.0524 (17)0.063 (2)0.0435 (16)0.0038 (15)0.0217 (13)0.0023 (14)
C40.0538 (17)0.061 (2)0.0460 (16)0.0086 (15)0.0165 (14)0.0063 (14)
C50.0377 (14)0.0506 (18)0.0442 (15)0.0010 (12)0.0168 (12)0.0017 (12)
C60.0365 (14)0.0443 (17)0.0391 (14)0.0008 (12)0.0098 (11)0.0002 (12)
C6A0.0386 (14)0.0500 (18)0.0384 (14)0.0034 (12)0.0149 (11)0.0026 (12)
N70.0419 (13)0.0487 (15)0.0428 (12)0.0032 (11)0.0178 (10)0.0072 (10)
C7A0.0425 (15)0.0429 (17)0.0499 (16)0.0001 (12)0.0192 (13)0.0001 (12)
C80.0562 (18)0.055 (2)0.0564 (18)0.0026 (15)0.0308 (15)0.0066 (14)
C90.0571 (19)0.056 (2)0.077 (2)0.0016 (16)0.0402 (17)0.0018 (16)
C100.0460 (17)0.056 (2)0.074 (2)0.0104 (15)0.0246 (16)0.0030 (16)
C110.0472 (16)0.0501 (19)0.0553 (18)0.0036 (14)0.0174 (14)0.0013 (14)
C11A0.0418 (14)0.0400 (16)0.0442 (15)0.0020 (12)0.0171 (12)0.0002 (12)
C11B0.0390 (14)0.0433 (17)0.0391 (14)0.0010 (12)0.0147 (11)0.0007 (11)
C120.0475 (16)0.052 (2)0.0429 (15)0.0015 (14)0.0180 (13)0.0029 (13)
C130.0432 (16)0.068 (2)0.0566 (19)0.0007 (15)0.0073 (14)0.0007 (16)
C140.0479 (17)0.074 (3)0.0577 (19)0.0118 (16)0.0099 (15)0.0141 (17)
C150.0520 (17)0.0524 (19)0.0441 (16)0.0017 (14)0.0156 (13)0.0071 (13)
C160.119 (4)0.063 (3)0.074 (3)0.027 (2)0.035 (2)0.013 (2)
C170.0477 (17)0.074 (2)0.0442 (17)0.0052 (16)0.0076 (13)0.0027 (15)
C180.086 (3)0.086 (3)0.0510 (19)0.031 (2)0.0245 (18)0.0132 (19)
Geometric parameters (Å, º) top
S1—C61.835 (3)C9—H90.9300
S1—C131.798 (3)C10—C91.393 (5)
S2—C61.866 (3)C10—H100.9300
S2—C141.807 (3)C11—C101.375 (4)
O1—C151.388 (4)C11—H110.9300
O1—C161.377 (4)C11A—C111.405 (4)
O2—C31.238 (4)C11B—C11.504 (4)
C1—C121.516 (4)C11B—C11A1.429 (4)
C1—H10.9800C12—C51.518 (4)
N2—C11.480 (4)C12—H12A0.9700
N2—C31.338 (4)C12—H12B0.9700
N2—C171.466 (4)C13—H13A0.9700
C3—C41.515 (4)C13—H13B0.9700
C4—H4A0.9700C14—C131.511 (5)
C4—H4B0.9700C14—H14A0.9700
C5—C41.556 (4)C14—H14B0.9700
C5—H50.9800C15—H15A0.9700
C6—C51.551 (4)C15—H15B0.9700
C6A—C61.500 (4)C16—H16A0.9600
C6A—C11B1.371 (4)C16—H16B0.9600
N7—C6A1.398 (3)C16—H16C0.9600
N7—C7A1.387 (3)C17—C181.513 (5)
N7—C151.454 (4)C17—H17A0.9700
C7A—C81.392 (4)C17—H17B0.9700
C7A—C11A1.407 (4)C18—H18A0.9600
C8—C91.378 (5)C18—H18B0.9600
C8—H80.9300C18—H18C0.9600
C13—S1—C696.77 (14)C10—C11—C11A118.3 (3)
C14—S2—C698.91 (15)C10—C11—H11120.8
C16—O1—C15117.4 (3)C11A—C11—H11120.8
N2—C1—C11B112.3 (2)C7A—C11A—C11B106.8 (2)
N2—C1—C12109.2 (2)C11—C11A—C7A119.2 (3)
N2—C1—H1108.9C11—C11A—C11B134.0 (3)
C11B—C1—C12108.6 (2)C6A—C11B—C1123.3 (2)
C11B—C1—H1108.9C6A—C11B—C11A107.8 (2)
C12—C1—H1108.9C11A—C11B—C1128.7 (2)
C3—N2—C1120.8 (2)C1—C12—C5107.7 (2)
C3—N2—C17120.6 (3)C1—C12—H12A110.2
C17—N2—C1118.6 (3)C1—C12—H12B110.2
O2—C3—N2123.1 (3)C5—C12—H12A110.2
O2—C3—C4118.0 (3)C5—C12—H12B110.2
N2—C3—C4118.9 (3)H12A—C12—H12B108.5
C3—C4—C5118.9 (3)S1—C13—H13A110.3
C3—C4—H4A107.6S1—C13—H13B110.3
C3—C4—H4B107.6C14—C13—S1107.3 (2)
C5—C4—H4A107.6C14—C13—H13A110.3
C5—C4—H4B107.6C14—C13—H13B110.3
H4A—C4—H4B107.0H13A—C13—H13B108.5
C4—C5—H5107.8S2—C14—H14A109.9
C6—C5—C4113.4 (2)S2—C14—H14B109.9
C6—C5—H5107.8C13—C14—S2109.0 (2)
C12—C5—C4109.2 (2)C13—C14—H14A109.9
C12—C5—C6110.7 (2)C13—C14—H14B109.9
C12—C5—H5107.8H14A—C14—H14B108.3
S1—C6—S2106.50 (13)O1—C15—N7113.3 (2)
C5—C6—S1111.18 (19)O1—C15—H15A108.9
C5—C6—S2107.92 (19)O1—C15—H15B108.9
C6A—C6—S1106.70 (19)N7—C15—H15A108.9
C6A—C6—S2116.2 (2)N7—C15—H15B108.9
C6A—C6—C5108.4 (2)H15A—C15—H15B107.7
N7—C6A—C6126.4 (2)O1—C16—H16A109.5
C11B—C6A—N7109.2 (2)O1—C16—H16B109.5
C11B—C6A—C6123.8 (2)O1—C16—H16C109.5
C6A—N7—C15129.9 (2)H16A—C16—H16B109.5
C7A—N7—C6A108.0 (2)H16A—C16—H16C109.5
C7A—N7—C15122.1 (2)H16B—C16—H16C109.5
N7—C7A—C8129.2 (3)N2—C17—C18111.5 (3)
N7—C7A—C11A108.4 (2)N2—C17—H17A109.3
C8—C7A—C11A122.3 (3)N2—C17—H17B109.3
C7A—C8—H8121.5C18—C17—H17A109.3
C9—C8—C7A117.0 (3)C18—C17—H17B109.3
C9—C8—H8121.5H17A—C17—H17B108.0
C8—C9—C10121.7 (3)C17—C18—H18A109.5
C8—C9—H9119.1C17—C18—H18B109.5
C10—C9—H9119.1C17—C18—H18C109.5
C9—C10—H10119.3H18A—C18—H18B109.5
C11—C10—C9121.5 (3)H18A—C18—H18C109.5
C11—C10—H10119.3H18B—C18—H18C109.5
C13—S1—C6—S226.72 (17)N7—C6A—C11B—C1175.0 (3)
C13—S1—C6—C590.6 (2)N7—C6A—C11B—C11A0.0 (3)
C13—S1—C6—C6A151.4 (2)C6—C6A—C11B—C13.6 (4)
C6—S1—C13—C1445.6 (2)C6—C6A—C11B—C11A171.4 (3)
C14—S2—C6—S14.39 (17)C7A—N7—C6A—C6170.9 (3)
C14—S2—C6—C5115.1 (2)C7A—N7—C6A—C11B0.2 (3)
C14—S2—C6—C6A123.0 (2)C15—N7—C6A—C612.6 (5)
C6—S2—C14—C1325.5 (3)C15—N7—C6A—C11B176.2 (3)
C16—O1—C15—N759.0 (4)C6A—N7—C7A—C8176.2 (3)
N2—C1—C12—C567.7 (3)C6A—N7—C7A—C11A0.4 (3)
C11B—C1—C12—C555.0 (3)C15—N7—C7A—C87.0 (5)
C3—N2—C1—C11B80.0 (3)C15—N7—C7A—C11A176.4 (3)
C3—N2—C1—C1240.5 (4)C6A—N7—C15—O1116.8 (3)
C17—N2—C1—C11B102.7 (3)C7A—N7—C15—O159.2 (4)
C17—N2—C1—C12136.8 (3)N7—C7A—C8—C9176.8 (3)
C1—N2—C3—O2179.1 (3)C11A—C7A—C8—C90.6 (5)
C1—N2—C3—C41.3 (4)N7—C7A—C11A—C11178.5 (3)
C17—N2—C3—O23.6 (5)N7—C7A—C11A—C11B0.4 (3)
C17—N2—C3—C4175.9 (3)C8—C7A—C11A—C111.6 (5)
C1—N2—C17—C1882.9 (3)C8—C7A—C11A—C11B176.5 (3)
C3—N2—C17—C1894.4 (4)C7A—C8—C9—C100.7 (5)
O2—C3—C4—C5169.0 (3)C11—C10—C9—C81.0 (6)
N2—C3—C4—C510.6 (4)C11A—C11—C10—C90.0 (5)
C6—C5—C4—C3106.4 (3)C7A—C11A—C11—C101.3 (5)
C12—C5—C4—C317.5 (4)C11B—C11A—C11—C10176.2 (3)
S1—C6—C5—C4167.51 (19)C6A—C11B—C1—N297.1 (3)
S1—C6—C5—C1269.4 (3)C6A—C11B—C1—C1223.8 (4)
S2—C6—C5—C451.1 (3)C11A—C11B—C1—N289.0 (4)
S2—C6—C5—C12174.13 (19)C11A—C11B—C1—C12150.2 (3)
C6A—C6—C5—C475.5 (3)C1—C11B—C11A—C7A174.4 (3)
C6A—C6—C5—C1247.5 (3)C1—C11B—C11A—C113.3 (5)
N7—C6A—C6—S164.9 (3)C6A—C11B—C11A—C7A0.3 (3)
N7—C6A—C6—S253.6 (4)C6A—C11B—C11A—C11177.9 (3)
N7—C6A—C6—C5175.3 (3)C1—C12—C5—C454.7 (3)
C11B—C6A—C6—S1105.0 (3)C1—C12—C5—C670.7 (3)
C11B—C6A—C6—S2136.5 (3)S2—C14—C13—S146.9 (3)
C11B—C6A—C6—C514.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O1i0.962.433.365 (5)165
C11—H11···Cg1ii0.932.803.569 (4)141
C16—H16A···Cg1iii0.962.663.514 (5)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O2S2
Mr388.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)14.0409 (3), 6.8916 (2), 20.2820 (4)
β (°) 109.783 (2)
V3)1846.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.910, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
24759, 3794, 2746
Rint0.083
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.05
No. of reflections3794
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O1i0.962.433.365 (5)165
C11—H11···Cg1ii0.932.803.569 (4)141
C16—H16A···Cg1iii0.962.663.514 (5)148
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich, New York: Verlag Helvetica Chimica Acta, Wiley.  Google Scholar
First citationHökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem. 43, 585–591.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds