organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (2S,4R)-4-(4-bromo­phen­yl)-2-hydr­­oxy-5,10-dioxo-3,4,5,10-tetra­hydro-2H-benzo[g]chromene-2-carboxyl­ate

aState Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: yifengwang108@gmail.com

(Received 23 December 2009; accepted 11 January 2010; online 16 January 2010)

In the crystal structure of the title compound, C22H17BrO6, the quinone ring makes a dihedral angle of 81.84 (3)° with the benzene ring. The chiral C atoms, viz. the ring C atoms bearing the hydr­oxy and bromo­phenyl substituents, exhibit R and S configurations, respectively. The terminal ethyl group of the –CO2CH2CH3 group is disordered over two sets of sites with site-occupancy factors of 0.64 (1) and 0.36 (1). Inter­molecular O—H⋯O inter­actions further stabilize the crystal packing.

Related literature

For general background to the modification of hydroxyquinone, see: Rueping et al. (2008[Rueping, M., Sugiono, E. & Merino, E. (2008). Angew. Chem. Int. Ed. 47, 3046-3049.]); Zhou et al. (2008[Zhou, W. M., Liu, H. & Du, D. M. (2008). Org. Lett. 10, 2817-2820.]). For related structures, see: Peng (2006[Peng, D.-Q. (2006). Acta Cryst. E62, o4706-o4707.]); Nasiri et al. (2008[Nasiri, H., Bolte, M. & Schwalbe, H. (2008). Nat. Prod. Res. 22, 1225-1230.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17BrO6

  • Mr = 457.27

  • Monoclinic, P 21

  • a = 8.2993 (6) Å

  • b = 9.9445 (7) Å

  • c = 12.4884 (10) Å

  • β = 96.323 (2)°

  • V = 1024.43 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.520, Tmax = 0.565

  • 9887 measured reflections

  • 4549 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.122

  • S = 1.00

  • 4549 reflections

  • 273 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2082 Friedel pairs

  • Flack parameter: −0.008 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.82 1.90 2.716 (4) 177
Symmetry code: (i) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Michael addition to α, β-unsaturated systems is an important carbon-carbon bond-forming reaction in organic synthesis. Hydroxyquinones, quinones bearing a hydroxy group on the quinone ring, are an important class of the naturally occurring quinones with diverse biological activity. The title compound, ethyl (2S,4R)-4-(4-bromophenyl)-2-hydroxy-5,10-dioxo-3,4,5,10-tetrahydro-2H-benzo[g]chromene-2-carboxylate, was synthesized from a Michael Addition of 2-hydroxy-1,4-naphthoquinone to β,γ-unsaturated α-keto esters. The crystal structure of the title compound (Fig. 1) contains a tricyclic ring system with two chiral centers, which is consisting of a quinone ring and a tetrahydropyrane. One carbon atom of the tetrahydropyrane structure is not coplanar with the backbone, lying 0.554 (4) Å from the mean plane of the rest backbone. The terminal ethyl group of CO2CH2CH3 is disordered over two sites with site occupancy factors of 0.64 (1) and 0.36 (1). Moreover, weak O-H···O and C-H···O intermolecular interactions further stabilize the crystal structure.

Related literature top

For general background, see: Rueping et al. (2008); Zhou et al. (2008). For related structures, see: Peng (2006); Nasiri et al. (2008).

Experimental top

To a solution of (E)-ethyl 4-(4-bromophenyl)-2-oxobut-3-enoate (1 mmol) and 2-hydroxy-1,4-naphthoquinone (1 mmol) in 1,4-dioxane (3 ml) was added 3-((1S)-(6-methoxyquinolin-4-yl) (8-vinylquinuclidin-2-yl)methylamino)-4- ((S)-1-phenylethylamino)cyclobut -3-ene-1,2-dione (0.025 mmol) as catalyst, and the mixture was stirred at room temperature for 12 h (monitored by TLC). Then the solvent was distilled under vacuum, and the residue was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound. Single crystals were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were placed in calculated positions with C—H = 0.98 Å (sp), C—H = 0.97 (1) Å (sp2), C—H = 0.96 (1) Å (sp3), C—H = 0.93 (1) Å (aromatic) and Uiso(H) = 1.2Ueq of the carrier carbon atoms. There is a positional disorder of the terminal ethyl group of CO2CH2CH3, the corresponding atoms C21 and C22 were split into two sites with refined site occupancy factors of 0.64 (1) and 0.36 (1).

Structure description top

The Michael addition to α, β-unsaturated systems is an important carbon-carbon bond-forming reaction in organic synthesis. Hydroxyquinones, quinones bearing a hydroxy group on the quinone ring, are an important class of the naturally occurring quinones with diverse biological activity. The title compound, ethyl (2S,4R)-4-(4-bromophenyl)-2-hydroxy-5,10-dioxo-3,4,5,10-tetrahydro-2H-benzo[g]chromene-2-carboxylate, was synthesized from a Michael Addition of 2-hydroxy-1,4-naphthoquinone to β,γ-unsaturated α-keto esters. The crystal structure of the title compound (Fig. 1) contains a tricyclic ring system with two chiral centers, which is consisting of a quinone ring and a tetrahydropyrane. One carbon atom of the tetrahydropyrane structure is not coplanar with the backbone, lying 0.554 (4) Å from the mean plane of the rest backbone. The terminal ethyl group of CO2CH2CH3 is disordered over two sites with site occupancy factors of 0.64 (1) and 0.36 (1). Moreover, weak O-H···O and C-H···O intermolecular interactions further stabilize the crystal structure.

For general background, see: Rueping et al. (2008); Zhou et al. (2008). For related structures, see: Peng (2006); Nasiri et al. (2008).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound showing O—H···O interactions (symmetry code i = x+1, y, z).
Ethyl (2S,4R)-4-(4-bromophenyl)-2-hydroxy-5,10-dioxo-3,4,5,10- tetrahydro-2H-benzo[g]chromene-2-carboxylate top
Crystal data top
C22H17BrO6F(000) = 464
Mr = 457.27Dx = 1.482 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6026 reflections
a = 8.2993 (6) Åθ = 3.1–27.4°
b = 9.9445 (7) ŵ = 2.04 mm1
c = 12.4884 (10) ÅT = 296 K
β = 96.323 (2)°Block, yellow
V = 1024.43 (13) Å30.32 × 0.30 × 0.28 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4549 independent reflections
Radiation source: rolling anode2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 109
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.520, Tmax = 0.565l = 1616
9887 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.125P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.30 e Å3
4549 reflectionsΔρmin = 0.37 e Å3
273 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.032 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2082 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.008 (11)
Crystal data top
C22H17BrO6V = 1024.43 (13) Å3
Mr = 457.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2993 (6) ŵ = 2.04 mm1
b = 9.9445 (7) ÅT = 296 K
c = 12.4884 (10) Å0.32 × 0.30 × 0.28 mm
β = 96.323 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4549 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2257 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.565Rint = 0.036
9887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.122Δρmax = 0.30 e Å3
S = 1.00Δρmin = 0.37 e Å3
4549 reflectionsAbsolute structure: Flack (1983), 2082 Friedel pairs
273 parametersAbsolute structure parameter: 0.008 (11)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.33160 (10)0.08140 (7)0.99547 (5)0.1284 (4)
O20.4425 (4)0.3938 (3)0.2686 (3)0.0777 (8)
O30.5431 (3)0.4731 (3)0.4648 (2)0.0672 (7)
O10.0040 (4)0.4443 (3)0.5476 (3)0.0859 (10)
O50.6613 (4)0.2659 (3)0.5810 (3)0.0889 (10)
C90.1656 (5)0.3695 (4)0.2984 (4)0.0611 (10)
O40.7341 (3)0.5933 (3)0.5658 (3)0.0775 (8)
H40.81670.55020.55930.093*
C10.3205 (5)0.5027 (4)0.6295 (3)0.0570 (10)
H10.23900.56950.64430.068*
O60.7358 (5)0.3924 (4)0.7236 (3)0.1036 (12)
C110.3827 (5)0.4427 (4)0.4456 (3)0.0538 (10)
C120.6071 (5)0.5058 (4)0.5745 (4)0.0606 (10)
C40.0525 (5)0.3817 (4)0.3718 (3)0.0590 (10)
C20.2738 (5)0.4529 (4)0.5170 (3)0.0531 (9)
C140.3196 (4)0.3945 (4)0.7159 (3)0.0569 (10)
C150.3232 (6)0.4341 (4)0.8218 (4)0.0771 (13)
H150.32190.52550.83750.093*
C130.4825 (4)0.5773 (5)0.6336 (3)0.0615 (9)
H13A0.46330.66600.60250.074*
H13B0.52610.58900.70830.074*
C80.1163 (7)0.3247 (5)0.1949 (4)0.0797 (13)
H80.19220.31350.14610.096*
C70.0437 (7)0.2971 (5)0.1644 (4)0.0874 (15)
H70.07580.26880.09430.105*
C190.3191 (5)0.2591 (4)0.6952 (4)0.0629 (11)
H190.31510.22950.62430.076*
C30.1041 (5)0.4276 (4)0.4823 (4)0.0630 (11)
C100.3394 (5)0.4014 (4)0.3315 (4)0.0618 (11)
C200.6695 (5)0.3722 (5)0.6254 (4)0.0685 (11)
C50.1090 (5)0.3531 (4)0.3391 (4)0.0707 (11)
H50.18520.36270.38790.085*
C60.1585 (6)0.3107 (5)0.2360 (4)0.0795 (14)
H60.26700.29150.21480.095*
C160.3287 (6)0.3430 (5)0.9056 (4)0.0887 (14)
H160.33340.37230.97660.106*
C180.3245 (5)0.1658 (4)0.7774 (4)0.0755 (13)
H180.32640.07440.76160.091*
C170.3270 (6)0.2071 (5)0.8817 (4)0.0789 (13)
C21A0.8604 (17)0.2834 (14)0.7646 (12)0.132 (5)0.640 (10)
H21A0.86980.21380.71120.159*0.640 (10)
H21B0.96650.32150.78680.159*0.640 (10)
C22A0.7845 (17)0.2353 (15)0.8537 (12)0.147 (4)0.640 (10)
H22A0.85930.18000.89830.221*0.640 (10)
H22B0.69070.18330.82800.221*0.640 (10)
H22C0.75230.31010.89500.221*0.640 (10)
C21B0.763 (3)0.2550 (18)0.780 (3)0.132 (5)0.360 (10)
H21C0.67310.23000.81940.159*0.360 (10)
H21D0.78290.18400.72970.159*0.360 (10)
C22B0.903 (3)0.289 (3)0.849 (2)0.147 (4)0.360 (10)
H22D0.88420.27390.92240.221*0.360 (10)
H22E0.92940.38190.83920.221*0.360 (10)
H22F0.99240.23390.83220.221*0.360 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.2086 (8)0.0939 (4)0.0809 (4)0.0050 (5)0.0071 (4)0.0256 (3)
O20.0728 (19)0.096 (2)0.068 (2)0.0024 (17)0.0246 (16)0.0008 (16)
O30.0554 (17)0.0802 (18)0.067 (2)0.0018 (14)0.0092 (14)0.0006 (15)
O10.0552 (17)0.128 (3)0.075 (2)0.0008 (16)0.0111 (17)0.0089 (19)
O50.094 (2)0.0616 (19)0.109 (3)0.0086 (17)0.005 (2)0.0157 (18)
C90.063 (3)0.062 (2)0.057 (3)0.002 (2)0.002 (2)0.0062 (19)
O40.0591 (16)0.0631 (16)0.110 (2)0.0151 (15)0.0098 (17)0.004 (2)
C10.060 (2)0.051 (2)0.061 (3)0.0031 (18)0.011 (2)0.0041 (18)
O60.132 (3)0.079 (2)0.091 (3)0.025 (2)0.027 (2)0.006 (2)
C110.054 (2)0.052 (2)0.056 (3)0.0022 (16)0.006 (2)0.0052 (17)
C120.055 (2)0.058 (2)0.067 (3)0.0071 (19)0.002 (2)0.0010 (19)
C40.051 (2)0.062 (2)0.062 (3)0.0003 (18)0.000 (2)0.0078 (19)
C20.042 (2)0.055 (2)0.062 (3)0.0040 (16)0.0023 (19)0.0026 (17)
C140.062 (2)0.053 (2)0.055 (3)0.0003 (19)0.0055 (19)0.0066 (18)
C150.118 (4)0.053 (2)0.062 (3)0.006 (2)0.016 (3)0.004 (2)
C130.063 (2)0.0481 (18)0.073 (3)0.001 (2)0.0057 (19)0.001 (2)
C80.092 (4)0.094 (3)0.053 (3)0.003 (3)0.009 (3)0.001 (2)
C70.091 (4)0.103 (4)0.063 (3)0.008 (3)0.013 (3)0.005 (3)
C190.071 (3)0.058 (2)0.060 (3)0.0003 (19)0.009 (2)0.0053 (19)
C30.060 (3)0.064 (2)0.066 (3)0.0035 (18)0.010 (2)0.0004 (19)
C100.063 (3)0.057 (2)0.066 (3)0.002 (2)0.013 (2)0.010 (2)
C200.062 (3)0.065 (3)0.077 (3)0.004 (2)0.002 (2)0.000 (2)
C50.062 (3)0.077 (3)0.073 (3)0.006 (2)0.007 (2)0.002 (2)
C60.077 (3)0.082 (3)0.076 (4)0.007 (2)0.006 (3)0.003 (3)
C160.126 (4)0.085 (3)0.056 (3)0.002 (3)0.014 (3)0.012 (2)
C180.093 (4)0.057 (3)0.075 (3)0.003 (2)0.005 (3)0.001 (2)
C170.097 (4)0.073 (3)0.065 (3)0.004 (2)0.004 (3)0.005 (2)
C21A0.160 (14)0.136 (8)0.092 (7)0.003 (9)0.021 (10)0.026 (7)
C22A0.133 (10)0.180 (12)0.129 (9)0.002 (9)0.013 (9)0.027 (9)
C21B0.160 (14)0.136 (8)0.092 (7)0.003 (9)0.021 (10)0.026 (7)
C22B0.133 (10)0.180 (12)0.129 (9)0.002 (9)0.013 (9)0.027 (9)
Geometric parameters (Å, º) top
Br1—C171.889 (5)C15—H150.9300
O2—C101.226 (5)C13—H13A0.9700
O3—C111.360 (5)C13—H13B0.9700
O3—C121.451 (5)C8—C71.368 (7)
O1—C31.238 (5)C8—H80.9300
O5—C201.192 (5)C7—C61.384 (7)
C9—C81.386 (6)C7—H70.9300
C9—C41.387 (6)C19—C181.381 (6)
C9—C101.490 (6)C19—H190.9300
O4—C121.380 (5)C5—C61.374 (7)
O4—H40.8200C5—H50.9300
C1—C21.500 (5)C6—H60.9300
C1—C141.524 (6)C16—C171.383 (6)
C1—C131.531 (5)C16—H160.9300
C1—H10.9800C18—C171.364 (6)
O6—C201.304 (5)C18—H180.9300
O6—C21B1.541 (12)C21A—C22A1.420 (13)
O6—C21A1.546 (11)C21A—H21A0.9700
C11—C21.341 (6)C21A—H21B0.9700
C11—C101.489 (6)C22A—H22A0.9600
C12—C131.513 (6)C22A—H22B0.9600
C12—C201.538 (6)C22A—H22C0.9600
C4—C51.387 (6)C21B—C22B1.415 (14)
C4—C31.472 (6)C21B—H21C0.9700
C2—C31.450 (6)C21B—H21D0.9700
C14—C191.371 (5)C22B—H22D0.9600
C14—C151.377 (6)C22B—H22E0.9600
C15—C161.381 (6)C22B—H22F0.9600
C11—O3—C12117.8 (3)C14—C19—C18121.4 (4)
C8—C9—C4119.5 (4)C14—C19—H19119.3
C8—C9—C10120.3 (4)C18—C19—H19119.3
C4—C9—C10120.2 (4)O1—C3—C2118.7 (4)
C12—O4—H4109.5O1—C3—C4120.9 (4)
C2—C1—C14114.1 (3)C2—C3—C4120.5 (4)
C2—C1—C13109.0 (3)O2—C10—C11121.2 (4)
C14—C1—C13113.0 (3)O2—C10—C9122.1 (4)
C2—C1—H1106.7C11—C10—C9116.6 (4)
C14—C1—H1106.7O5—C20—O6124.8 (4)
C13—C1—H1106.7O5—C20—C12125.1 (4)
C20—O6—C21B108.5 (11)O6—C20—C12110.1 (4)
C20—O6—C21A113.7 (7)C6—C5—C4121.2 (4)
C2—C11—O3125.7 (4)C6—C5—H5119.4
C2—C11—C10123.2 (4)C4—C5—H5119.4
O3—C11—C10111.0 (3)C5—C6—C7118.7 (5)
O4—C12—O3105.7 (3)C5—C6—H6120.7
O4—C12—C13108.1 (3)C7—C6—H6120.7
O3—C12—C13111.6 (3)C15—C16—C17118.6 (4)
O4—C12—C20110.6 (3)C15—C16—H16120.7
O3—C12—C20105.5 (3)C17—C16—H16120.7
C13—C12—C20114.9 (4)C17—C18—C19120.2 (4)
C9—C4—C5119.4 (4)C17—C18—H18119.9
C9—C4—C3119.9 (4)C19—C18—H18119.9
C5—C4—C3120.8 (4)C18—C17—C16119.9 (4)
C11—C2—C3119.4 (4)C18—C17—Br1121.0 (4)
C11—C2—C1121.6 (3)C16—C17—Br1119.0 (4)
C3—C2—C1118.7 (4)C22A—C21A—O699.0 (10)
C19—C14—C15117.5 (4)C22A—C21A—H21A112.0
C19—C14—C1124.0 (4)O6—C21A—H21A112.0
C15—C14—C1118.5 (3)C22A—C21A—H21B112.0
C14—C15—C16122.4 (4)O6—C21A—H21B112.0
C14—C15—H15118.8H21A—C21A—H21B109.6
C16—C15—H15118.8C22B—C21B—O697.8 (16)
C12—C13—C1113.6 (3)C22B—C21B—H21C112.2
C12—C13—H13A108.8O6—C21B—H21C112.2
C1—C13—H13A108.8C22B—C21B—H21D112.2
C12—C13—H13B108.8O6—C21B—H21D112.2
C1—C13—H13B108.8H21C—C21B—H21D109.8
H13A—C13—H13B107.7C21B—C22B—H22D109.5
C7—C8—C9120.1 (5)C21B—C22B—H22E109.5
C7—C8—H8120.0H22D—C22B—H22E109.5
C9—C8—H8120.0C21B—C22B—H22F109.5
C8—C7—C6121.1 (5)H22D—C22B—H22F109.5
C8—C7—H7119.4H22E—C22B—H22F109.5
C6—C7—H7119.4
C12—O3—C11—C27.0 (5)C9—C4—C3—O1177.1 (4)
C12—O3—C11—C10175.6 (3)C5—C4—C3—O11.6 (6)
C11—O3—C12—O4150.5 (3)C9—C4—C3—C23.5 (5)
C11—O3—C12—C1333.2 (4)C5—C4—C3—C2177.9 (4)
C11—O3—C12—C2092.3 (4)C2—C11—C10—O2179.7 (4)
C8—C9—C4—C52.1 (6)O3—C11—C10—O22.2 (5)
C10—C9—C4—C5179.3 (4)C2—C11—C10—C90.5 (5)
C8—C9—C4—C3179.2 (4)O3—C11—C10—C9178.1 (3)
C10—C9—C4—C30.6 (5)C8—C9—C10—O22.5 (6)
O3—C11—C2—C3174.9 (3)C4—C9—C10—O2178.8 (4)
C10—C11—C2—C32.3 (5)C8—C9—C10—C11177.3 (4)
O3—C11—C2—C10.8 (6)C4—C9—C10—C111.4 (5)
C10—C11—C2—C1176.3 (3)C21B—O6—C20—O513.4 (15)
C14—C1—C2—C11109.5 (4)C21A—O6—C20—O522.5 (9)
C13—C1—C2—C1118.0 (5)C21B—O6—C20—C12167.8 (14)
C14—C1—C2—C376.5 (4)C21A—O6—C20—C12156.2 (7)
C13—C1—C2—C3156.1 (3)O4—C12—C20—O5115.1 (5)
C2—C1—C14—C1916.4 (5)O3—C12—C20—O51.3 (5)
C13—C1—C14—C19108.9 (4)C13—C12—C20—O5122.1 (5)
C2—C1—C14—C15165.1 (4)O4—C12—C20—O663.6 (5)
C13—C1—C14—C1569.5 (5)O3—C12—C20—O6177.5 (4)
C19—C14—C15—C161.0 (7)C13—C12—C20—O659.2 (5)
C1—C14—C15—C16177.6 (4)C9—C4—C5—C61.1 (6)
O4—C12—C13—C1168.5 (3)C3—C4—C5—C6179.8 (4)
O3—C12—C13—C152.7 (4)C4—C5—C6—C70.2 (7)
C20—C12—C13—C167.4 (4)C8—C7—C6—C50.2 (8)
C2—C1—C13—C1244.0 (4)C14—C15—C16—C171.4 (8)
C14—C1—C13—C1284.1 (4)C14—C19—C18—C171.4 (7)
C4—C9—C8—C72.1 (7)C19—C18—C17—C161.8 (7)
C10—C9—C8—C7179.2 (4)C19—C18—C17—Br1179.2 (3)
C9—C8—C7—C61.2 (8)C15—C16—C17—C181.8 (8)
C15—C14—C19—C180.9 (6)C15—C16—C17—Br1179.2 (4)
C1—C14—C19—C18177.5 (4)C20—O6—C21A—C22A119.4 (11)
C11—C2—C3—O1176.2 (4)C21B—O6—C21A—C22A31 (2)
C1—C2—C3—O12.0 (5)C20—O6—C21B—C22B149 (2)
C11—C2—C3—C44.3 (5)C21A—O6—C21B—C22B43.5 (16)
C1—C2—C3—C4178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.902.716 (4)177
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H17BrO6
Mr457.27
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.2993 (6), 9.9445 (7), 12.4884 (10)
β (°) 96.323 (2)
V3)1024.43 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.520, 0.565
No. of measured, independent and
observed [I > 2σ(I)] reflections
9887, 4549, 2257
Rint0.036
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.122, 1.00
No. of reflections4549
No. of parameters273
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.37
Absolute structureFlack (1983), 2082 Friedel pairs
Absolute structure parameter0.008 (11)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.821.902.716 (4)177
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank Professor Jian-Ming Gu, Zhejiang University, for his help.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNasiri, H., Bolte, M. & Schwalbe, H. (2008). Nat. Prod. Res. 22, 1225–1230.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeng, D.-Q. (2006). Acta Cryst. E62, o4706–o4707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRueping, M., Sugiono, E. & Merino, E. (2008). Angew. Chem. Int. Ed. 47, 3046–3049.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, W. M., Liu, H. & Du, D. M. (2008). Org. Lett. 10, 2817–2820.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds