organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–3-nitro­benzoic acid (1/2)

aCollege of Materials and Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, and bCollege of Environment and Chemical Engineering & Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: wfengqin@yahoo.com.cn

(Received 12 January 2010; accepted 29 January 2010; online 6 February 2010)

The title compound, C10H8N2·2C7H5NO4,was obtained unintentionally as the harvested product of the hydro­thermal reaction between Co(OAc)2·4H2O and 4,4′-bipyridine in the presence of 3-nitro­phthalic acid. In the reaction, 3-nitro­phthalic acid is transformed into 3-nitro­benzoic acid by an in situ deca­rboxylation reaction, in which the carboxyl­ate group is not deprotonated and is uncoordinated. In the crystal, the uncoordinated 3-nitro­benzoic acid and free 4,4′-bipyridine mol­ecules are linked alternately by O—H⋯N hydrogen bonds into chains, which are assembled by C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For the use of 3-nitro­phthalic acid in the self-assembly of coordination compounds, see: Deng et al. (2007a[Deng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007a). Chin. J. Struct. Chem. 26, 642-648.],b[Deng, Y. H., Wang, S. Y., Liu, J., Yang, Y. L., Zhang, F. & Ma, H. W. (2007b). Acta Chim. Sin. 65, 809-815.]); Huang et al. (2007[Huang, Y., Yan, B., Shao, M. & Chen, Z. X. (2007). J. Mol. Struct. 871, 59-66.]); Song et al. (2007[Song, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem. 21, 150-155.]); Wang et al. (2009[Wang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42-m44.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C7H5NO4

  • Mr = 490.42

  • Monoclinic, C 2/c

  • a = 26.489 (7) Å

  • b = 6.7757 (14) Å

  • c = 13.291 (3) Å

  • β = 112.19 (3)°

  • V = 2208.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.978, Tmax = 0.989

  • 7177 measured reflections

  • 1935 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.09

  • 1935 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.85 (1) 1.76 (1) 2.608 (2) 175 (2)
C5—H5⋯O3ii 0.93 2.49 3.390 (2) 162
C9—H9⋯O4iii 0.93 2.55 3.436 (2) 159
C12—H12⋯O1iv 0.93 2.35 3.242 (2) 160
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3-nitrophthic acid acting as a multifunctional organic ligand has been widely used in the self-assembly of various coordination compounds (Deng et al., 2007a,b; Huang et al., 2007; Song et al., 2007, Wang et al., 2009). The title compound were obtained unintentionally as the harvested product of the hydrothermal reaction between Co(oAc)2.4H2O and 4,4'-bipyridine in the presence of 3-nitrophthic acid. In the title compound, 3-nitrophthlic acid is transformed into 3-nitrobenzoic acid by in situ decarboxylation reaction, in which the carboxylate group is not deprotoned and is uncoordinated. The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are normal within experimental error.

The crystal packing of the title compound is illustrated in Fig. 2. The uncoordinated 3-nitrobenzoic acid and free 4,4'-bipyridine molecules are linked alternately by hydrogen bonds (O—H···O) into one-dimensional chains. Furthermore, these one-dimensional chains are assembled by hydrogen bonds(C—H···O) into three-dimensional supramolecular network.

Related literature top

For the use of 3-nitrophthic acid in the self-assembly of coordination compounds, see: Deng et al. (2007a,b); Huang et al. (2007); Song et al. (2007); Wang et al. (2009).

Experimental top

A mixture of 3-nitrophthalic acid(0.020 g, 0.1 mmol), Co(oAc)2.4H2O(0.025 g, 0.1 mmol), 4,4'-bipyridine (0.019 g, 0.1 mmol), deionized water (8 ml) was sealed in a Teflon-lined stainless steel vessel (23 ml) and heated at 160 °C for 4 days under autogenous pressure and then cooled slowly to room temperature. The solution was filtered and after allowed to stand for a few weeks at room temperature, purple-red crystals were obtained.

Refinement top

The O-H hydrogen atom was found in a difference Fourier map and fixed during refinement at a O–H distance of 0.85 Å, with Uiso(H)=1.2 Ueq(O). The H atoms of C–H and N–H groups were treated as riding, with C–H = 0.97 Å and N–H = 0.86 Å and Uiso (H) = 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound along b axis. Hydrogen bonds are indicated by dashed lines.
4,4'-Bipyridine–3-nitrobenzoic acid (1/2) top
Crystal data top
C10H8N2·2C7H5NO4F(000) = 1016
Mr = 490.42Dx = 1.475 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2874 reflections
a = 26.489 (7) Åθ = 3.1–27.4°
b = 6.7757 (14) ŵ = 0.11 mm1
c = 13.291 (3) ÅT = 113 K
β = 112.19 (3)°Plate, purple–red
V = 2208.8 (9) Å30.20 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1935 independent reflections
Radiation source: rotating anode1646 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω and ϕ scansh = 3131
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 78
Tmin = 0.978, Tmax = 0.989l = 1315
7177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0461P]
where P = (Fo2 + 2Fc2)/3
1935 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C10H8N2·2C7H5NO4V = 2208.8 (9) Å3
Mr = 490.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.489 (7) ŵ = 0.11 mm1
b = 6.7757 (14) ÅT = 113 K
c = 13.291 (3) Å0.20 × 0.12 × 0.10 mm
β = 112.19 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1935 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1646 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.989Rint = 0.029
7177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.18 e Å3
1935 reflectionsΔρmin = 0.24 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30213 (4)0.58310 (15)0.39895 (8)0.0316 (3)
O20.26214 (4)0.60692 (13)0.21797 (8)0.0238 (3)
H20.2955 (4)0.608 (2)0.2257 (14)0.036*
O30.01600 (4)0.66151 (15)0.13387 (9)0.0328 (3)
O40.06802 (4)0.65732 (16)0.04209 (8)0.0363 (3)
N10.06088 (4)0.64662 (15)0.12810 (10)0.0223 (3)
N20.13751 (4)0.10542 (14)0.27135 (9)0.0189 (3)
C10.26146 (5)0.59392 (18)0.31583 (11)0.0204 (3)
C20.20523 (5)0.59219 (17)0.31772 (11)0.0189 (3)
C30.19834 (5)0.56014 (18)0.41546 (11)0.0231 (3)
H30.22870.54200.47910.028*
C40.14675 (6)0.55513 (18)0.41864 (12)0.0247 (3)
H40.14270.53340.48430.030*
C50.10097 (5)0.58232 (18)0.32441 (11)0.0224 (3)
H50.06610.57810.32560.027*
C60.10882 (5)0.61589 (17)0.22863 (11)0.0188 (3)
C70.15989 (5)0.62214 (17)0.22295 (11)0.0181 (3)
H70.16370.64580.15730.022*
C80.09648 (5)0.14365 (18)0.17646 (11)0.0200 (3)
H80.10490.16960.11580.024*
C90.04234 (5)0.14626 (18)0.16471 (11)0.0193 (3)
H90.01520.17580.09780.023*
C100.02882 (5)0.10427 (17)0.25412 (11)0.0175 (3)
C110.07148 (5)0.06255 (18)0.35231 (11)0.0195 (3)
H110.06420.03260.41380.023*
C120.12465 (5)0.06609 (17)0.35760 (11)0.0197 (3)
H120.15270.04000.42390.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (5)0.0538 (7)0.0208 (6)0.0010 (4)0.0028 (4)0.0011 (4)
O20.0140 (5)0.0381 (6)0.0195 (5)0.0001 (4)0.0066 (4)0.0023 (4)
O30.0145 (5)0.0425 (6)0.0437 (7)0.0011 (4)0.0134 (5)0.0002 (5)
O40.0229 (6)0.0611 (7)0.0243 (6)0.0058 (5)0.0083 (5)0.0070 (5)
N10.0167 (6)0.0213 (6)0.0295 (7)0.0001 (4)0.0095 (5)0.0005 (5)
N20.0153 (6)0.0180 (6)0.0226 (6)0.0008 (4)0.0064 (5)0.0013 (4)
C10.0190 (7)0.0219 (7)0.0205 (7)0.0017 (5)0.0075 (6)0.0003 (5)
C20.0185 (7)0.0183 (6)0.0203 (7)0.0013 (5)0.0078 (6)0.0015 (5)
C30.0233 (7)0.0260 (7)0.0195 (7)0.0018 (5)0.0076 (6)0.0001 (5)
C40.0302 (8)0.0256 (7)0.0235 (8)0.0019 (6)0.0161 (6)0.0002 (6)
C50.0227 (8)0.0179 (6)0.0321 (8)0.0014 (5)0.0167 (6)0.0026 (5)
C60.0169 (7)0.0154 (6)0.0233 (8)0.0005 (5)0.0067 (6)0.0018 (5)
C70.0201 (7)0.0166 (6)0.0198 (7)0.0013 (5)0.0100 (6)0.0018 (5)
C80.0189 (7)0.0192 (7)0.0233 (8)0.0017 (5)0.0096 (6)0.0009 (5)
C90.0150 (7)0.0197 (7)0.0209 (7)0.0005 (5)0.0042 (6)0.0006 (5)
C100.0153 (7)0.0147 (6)0.0220 (7)0.0007 (5)0.0067 (6)0.0025 (5)
C110.0187 (7)0.0200 (6)0.0203 (7)0.0009 (5)0.0079 (6)0.0001 (5)
C120.0150 (7)0.0197 (7)0.0211 (7)0.0018 (5)0.0030 (6)0.0009 (5)
Geometric parameters (Å, º) top
O1—C11.2197 (17)C4—H40.9300
O2—C11.3106 (17)C5—C61.3839 (19)
O2—H20.850 (9)C5—H50.9300
O3—N11.2242 (14)C6—C71.3838 (18)
O4—N11.2294 (14)C7—H70.9300
N1—C61.4695 (18)C8—C91.3827 (18)
N2—C121.3402 (18)C8—H80.9300
N2—C81.3430 (18)C9—C101.3938 (19)
C1—C21.4991 (19)C9—H90.9300
C2—C71.388 (2)C10—C111.3950 (19)
C2—C31.3954 (19)C10—C10i1.489 (2)
C3—C41.3835 (19)C11—C121.3836 (18)
C3—H30.9300C11—H110.9300
C4—C51.388 (2)C12—H120.9300
C1—O2—H2106.5 (12)C7—C6—N1118.22 (12)
O3—N1—O4123.21 (12)C5—C6—N1118.77 (11)
O3—N1—C6118.74 (12)C6—C7—C2118.33 (13)
O4—N1—C6118.05 (10)C6—C7—H7120.8
C12—N2—C8117.68 (11)C2—C7—H7120.8
O1—C1—O2124.35 (13)N2—C8—C9123.06 (13)
O1—C1—C2121.85 (13)N2—C8—H8118.5
O2—C1—C2113.79 (12)C9—C8—H8118.5
C7—C2—C3119.66 (13)C8—C9—C10119.38 (12)
C7—C2—C1120.54 (12)C8—C9—H9120.3
C3—C2—C1119.80 (12)C10—C9—H9120.3
C4—C3—C2120.68 (13)C9—C10—C11117.44 (12)
C4—C3—H3119.7C9—C10—C10i121.59 (14)
C2—C3—H3119.7C11—C10—C10i120.97 (15)
C3—C4—C5120.38 (13)C12—C11—C10119.56 (13)
C3—C4—H4119.8C12—C11—H11120.2
C5—C4—H4119.8C10—C11—H11120.2
C6—C5—C4117.93 (12)N2—C12—C11122.87 (12)
C6—C5—H5121.0N2—C12—H12118.6
C4—C5—H5121.0C11—C12—H12118.6
C7—C6—C5123.01 (13)
O1—C1—C2—C7174.30 (12)O4—N1—C6—C5173.13 (11)
O2—C1—C2—C76.02 (16)C5—C6—C7—C20.37 (18)
O1—C1—C2—C35.73 (18)N1—C6—C7—C2179.69 (10)
O2—C1—C2—C3173.94 (10)C3—C2—C7—C61.03 (17)
C7—C2—C3—C40.92 (18)C1—C2—C7—C6178.94 (10)
C1—C2—C3—C4179.05 (11)C12—N2—C8—C90.77 (17)
C2—C3—C4—C50.11 (18)N2—C8—C9—C101.16 (18)
C3—C4—C5—C60.54 (18)C8—C9—C10—C110.43 (16)
C4—C5—C6—C70.42 (18)C8—C9—C10—C10i179.76 (8)
C4—C5—C6—N1179.52 (10)C9—C10—C11—C120.59 (17)
O3—N1—C6—C7172.63 (10)C10i—C10—C11—C12179.22 (8)
O4—N1—C6—C76.93 (16)C8—N2—C12—C110.33 (17)
O3—N1—C6—C57.31 (16)C10—C11—C12—N21.01 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2ii0.85 (1)1.76 (1)2.608 (2)175 (2)
C5—H5···O3i0.932.493.390 (2)162
C9—H9···O4iii0.932.553.436 (2)159
C12—H12···O1iv0.932.353.242 (2)160
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C7H5NO4
Mr490.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)26.489 (7), 6.7757 (14), 13.291 (3)
β (°) 112.19 (3)
V3)2208.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.978, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7177, 1935, 1646
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.09
No. of reflections1935
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.85 (1)1.76 (1)2.608 (2)175 (2)
C5—H5···O3ii0.9302.4903.390 (2)162
C9—H9···O4iii0.9302.5503.436 (2)159
C12—H12···O1iv0.9302.3503.242 (2)160
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1.
 

Acknowledgements

We thank Tianjin Polytechnic University for financial support.

References

First citationDeng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007a). Chin. J. Struct. Chem. 26, 642–648.  CAS Google Scholar
First citationDeng, Y. H., Wang, S. Y., Liu, J., Yang, Y. L., Zhang, F. & Ma, H. W. (2007b). Acta Chim. Sin. 65, 809–815.  CAS Google Scholar
First citationHuang, Y., Yan, B., Shao, M. & Chen, Z. X. (2007). J. Mol. Struct. 871, 59–66.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem. 21, 150–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F.-Q., Lu, F.-L., Wei, B. & Zhao, Y.-N. (2009). Acta Cryst. C65, m42–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds