organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Di­hydroxy­meth­yl)pyridinium chloride

aCollege of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn,

(Received 18 January 2010; accepted 20 February 2010; online 27 February 2010)

In the title compound, C6H8NO2+·Cl, inter­molecular O—H⋯Cl and N—H⋯Cl hydrogen bonds are observed in which each chloride anion links three adjacent cations into a hydrogen-bond network.

Related literature

For a related compound, see Mantero et al. (2006[Mantero, D. G., Altaf, M., Neels, A. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5204-o5206.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO2+·Cl

  • Mr = 161.58

  • Monoclinic, P 21 /c

  • a = 4.6879 (7) Å

  • b = 15.557 (2) Å

  • c = 10.1199 (14) Å

  • β = 91.181 (2)°

  • V = 737.88 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.956

  • 3676 measured reflections

  • 1303 independent reflections

  • 842 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 0.89

  • 1303 reflections

  • 99 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl1i 0.85 (1) 2.24 (1) 3.089 (2) 176 (2)
O1—H1A⋯Cl1ii 0.85 (1) 2.19 (1) 3.0374 (18) 177 (3)
N1—H1⋯Cl1iii 0.86 2.33 3.115 (2) 151
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of pyridin-4-ylmethanediol, namely the hydrated form of isonicotinaldehyde has been previously reported (Mantero et al., 2006). In this paper, we report the X-ray single-crystal structure of pyridin-2-ylmethanediol-1-ium chloride (I).

The molecular structure of (I) is illustrated in Fig. 1. The two hydroxyl groups lie at the same side of the aromatic ring. In the crystal packing, intermolecular O—H···Cl and N—H···Cl hydrogen bonding interactions are observed where every chloride anion links three adjacent molecules into a hydrogen-bond sustained network (Fig. 2).

Related literature top

For a related compound, see Mantero et al. (2006).

Refinement top

The H1A atom bonded with atom O1 was located in the difference synthesis and were refined isotropically. The other H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.93–0.98 Å, N—H = 0.86 Å and O—H = 0.96 Å, Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the hydrogen bonding interactions in the crystal packing of (I), where the hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) x - 1, -y+3/2, z + 1/2; (ii) x, y1/2, z + 1; (iii) x, -y+3/2, z + 1/2.]
2-(Dihydroxymethyl)pyridinium chloride top
Crystal data top
C6H8NO2+·ClF(000) = 336
Mr = 161.58Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 776 reflections
a = 4.6879 (7) Åθ = 2.4–21.0°
b = 15.557 (2) ŵ = 0.45 mm1
c = 10.1199 (14) ÅT = 291 K
β = 91.181 (2)°Block, colourless
V = 737.88 (18) Å30.12 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1303 independent reflections
Radiation source: fine-focus sealed tube842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 55
Tmin = 0.948, Tmax = 0.956k = 1218
3676 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0272P)2]
where P = (Fo2 + 2Fc2)/3
1303 reflections(Δ/σ)max = 0.001
99 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H8NO2+·ClV = 737.88 (18) Å3
Mr = 161.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6879 (7) ŵ = 0.45 mm1
b = 15.557 (2) ÅT = 291 K
c = 10.1199 (14) Å0.12 × 0.12 × 0.10 mm
β = 91.181 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
842 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.956Rint = 0.058
3676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.22 e Å3
1303 reflectionsΔρmin = 0.23 e Å3
99 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0342 (4)0.62701 (15)0.8930 (2)0.0395 (6)
C20.1167 (5)0.54999 (16)0.8429 (2)0.0469 (6)
H20.25150.51680.88830.056*
C30.0002 (5)0.52104 (16)0.7246 (2)0.0544 (7)
H30.05490.46810.69060.065*
C40.1975 (5)0.57099 (17)0.6572 (2)0.0553 (7)
H40.27920.55190.57800.066*
C50.2716 (5)0.64860 (17)0.7082 (2)0.0504 (7)
H50.40150.68360.66300.060*
C60.1322 (5)0.66291 (15)1.0257 (2)0.0448 (6)
H60.01020.63821.09350.054*
Cl10.51126 (13)0.65293 (4)0.34503 (6)0.0572 (2)
H1A0.442 (6)0.6405 (18)1.1316 (11)0.090 (11)*
H2A0.211 (5)0.7784 (16)0.978 (2)0.080 (11)*
N10.1571 (4)0.67433 (12)0.82335 (17)0.0424 (5)
H10.20770.72330.85460.051*
O10.4092 (3)0.63308 (12)1.04924 (17)0.0573 (5)
O20.1066 (4)0.75152 (12)1.03217 (17)0.0567 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (13)0.0428 (15)0.0389 (13)0.0011 (11)0.0022 (11)0.0061 (11)
C20.0486 (14)0.0414 (15)0.0508 (15)0.0054 (12)0.0005 (12)0.0027 (12)
C30.0671 (17)0.0424 (16)0.0537 (17)0.0014 (14)0.0030 (14)0.0052 (13)
C40.0661 (18)0.0557 (18)0.0439 (15)0.0126 (15)0.0050 (13)0.0025 (13)
C50.0529 (16)0.0540 (17)0.0441 (15)0.0023 (13)0.0062 (12)0.0083 (13)
C60.0431 (14)0.0467 (16)0.0446 (14)0.0032 (13)0.0011 (11)0.0031 (12)
Cl10.0683 (5)0.0469 (4)0.0559 (4)0.0043 (3)0.0107 (3)0.0036 (3)
N10.0464 (12)0.0389 (12)0.0418 (12)0.0010 (10)0.0008 (9)0.0013 (9)
O10.0480 (11)0.0753 (14)0.0483 (12)0.0133 (9)0.0086 (9)0.0063 (9)
O20.0670 (13)0.0478 (12)0.0551 (12)0.0021 (10)0.0013 (10)0.0084 (9)
Geometric parameters (Å, º) top
C1—N11.348 (3)C5—N11.334 (3)
C1—C21.360 (3)C5—H50.9300
C1—C61.518 (3)C6—O21.385 (3)
C2—C31.381 (3)C6—O11.395 (3)
C2—H20.9300C6—H60.9800
C3—C41.379 (3)N1—H10.8600
C3—H30.9300O1—H1A0.852 (10)
C4—C51.361 (3)O2—H2A0.853 (10)
C4—H40.9300
N1—C1—C2118.5 (2)N1—C5—H5120.1
N1—C1—C6116.6 (2)C4—C5—H5120.1
C2—C1—C6124.8 (2)O2—C6—O1113.84 (19)
C1—C2—C3120.0 (2)O2—C6—C1112.52 (18)
C1—C2—H2120.0O1—C6—C1106.99 (18)
C3—C2—H2120.0O2—C6—H6107.7
C4—C3—C2119.6 (2)O1—C6—H6107.7
C4—C3—H3120.2C1—C6—H6107.7
C2—C3—H3120.2C5—N1—C1123.0 (2)
C5—C4—C3119.1 (2)C5—N1—H1118.5
C5—C4—H4120.4C1—N1—H1118.5
C3—C4—H4120.4C6—O1—H1A105.8 (19)
N1—C5—C4119.7 (2)C6—O2—H2A114.0 (19)
N1—C1—C2—C31.4 (3)C2—C1—C6—O2157.6 (2)
C6—C1—C2—C3175.9 (2)N1—C1—C6—O1150.91 (18)
C1—C2—C3—C40.6 (4)C2—C1—C6—O131.8 (3)
C2—C3—C4—C50.8 (4)C4—C5—N1—C10.7 (3)
C3—C4—C5—N11.4 (4)C2—C1—N1—C50.7 (3)
N1—C1—C6—O225.2 (3)C6—C1—N1—C5176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl1i0.85 (1)2.24 (1)3.089 (2)176 (2)
O1—H1A···Cl1ii0.85 (1)2.19 (1)3.0374 (18)177 (3)
N1—H1···Cl1iii0.862.333.115 (2)151
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H8NO2+·Cl
Mr161.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.6879 (7), 15.557 (2), 10.1199 (14)
β (°) 91.181 (2)
V3)737.88 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.948, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
3676, 1303, 842
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 0.89
No. of reflections1303
No. of parameters99
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl1i0.853 (10)2.238 (10)3.089 (2)176 (2)
O1—H1A···Cl1ii0.852 (10)2.186 (10)3.0374 (18)177 (3)
N1—H1···Cl1iii0.862.333.115 (2)151.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y, z+1; (iii) x1, y+3/2, z+1/2.
 

Acknowledgements

WH acknowledges the National Natural Science Foundation of China (No. 20871065) and the Jiangsu Province Department of Science and Technology (No. BK2009226) for financial aid.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationMantero, D. G., Altaf, M., Neels, A. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o5204–o5206.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds