organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o559-o560

(E)-2-Acetyl-4-[(3-methyl­phenyl­)diazen­yl]phenol: an X-ray and DFT study

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, bSinop University, Sinop Faculty of Education, TR-57000 Sinop, Turkey, and cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey
*Correspondence e-mail: yserap@omu.edu.tr

(Received 21 January 2010; accepted 28 January 2010; online 6 February 2010)

The title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 0.18 (14)°. There is a strong intra­molecular O—H⋯O hydrogen bond. Geometrical parameters, determined using X-ray diffraction techniques, are compared with those calculated by density functional theory (DFT), using hybrid exchange–correlation functional, B3LYP and semi-empirical (PM3) methods.

Related literature

For general background to azo compounds, see: Klaus (2003[Klaus, H. (2003). Industrial dyes, chemistry, properties, applications, pp. 20-35. New York: Wiley-VCH.]); Catino & Farris (1985[Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142-144. New York: John Wiley and Sons]); Zollinger (2003[Zollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH.]); Bahatti & Seshadri (2004[Bahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151-155.]); Taniike et al. (1996[Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.]); Fadda et al. (1994[Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343-349.]). For a related structure, see: El-Ghamry et al. (2008[El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673-o1674.]). For background to DFT calculations, see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A38, 3098-100.], 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785-789.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.])

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Monoclinic, P 21 /c

  • a = 8.6917 (3) Å

  • b = 10.9728 (3) Å

  • c = 14.6150 (5) Å

  • β = 112.881 (3)°

  • V = 1284.19 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.67 × 0.37 × 0.21 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.986

  • 16525 measured reflections

  • 2519 independent reflections

  • 2034 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.06

  • 2519 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (4) 1.78 (4) 2.567 (3) 156 (4)

Table 2
Selected geometric parameters (Å, °) calculated with X-ray, PM3 and DFT

Parameters X-ray PM3 DFT/B3LYP*
C4—O1 1.343 (3) 1.351 1.331
C7—O2 1.235 (3) 1.228 1.242
C7—C8 1.488 (3) 1.502 1.513
C13—C15 1.493 (4) 1.486 1.511
C1—N2 1.444 (3) 1.445 1.411
N1—N2 1.242 (3) 1.232 1.263
C9—N1 1.450 (3) 1.447 1.417
O2—C7—C8 119.8 (2) 120.465 118.986
O1—C4—C5 117.2 (2) 115.387 118.123
C7—C3—C4—O1 1.7 (3) −0.016 0.002
C9—N1—N2—C1 −179.99 (17) −179.965 −179.975
C2—C1—N2—N1 177.09 (19) −178.543 179.996
C10—C9—N1—N2 −177.6 (2) −172.651 179.997
*6–31G(d,p).

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and GAUSSIAN (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]).

Supporting information


Comment top

Azo compounds are very important in the field of dyes, pigments and advanced materials (Klaus, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and polymers, biological-medical studies and advanced applications in organic synthesis (Bahatti & Seshadri, 2004; Catino & Farris, 1985; Fadda et al., 1994; Taniike et al., 1996; Zollinger, 2003).

In the title compound, C15H14N2O2, the two aromatic groups atteched to the azo bridge are adopted (E) configuration. The molecule is planar and the dihedral angle between the two aromatic rings is 0.18(0.14)°. All the bond lengths are in agreement with reported for other azo compounds (El-Ghamry et al., 2008). The title molecule (Fig. 1) has a strong intramolecular hydrogen bond between the hydroxyl group and the carbonyl O atom.

Density-functional theory (DFT) (Schmidt & Polik, 2007) and semi-empirical (PM3) calculations and full-geometry optimizations were performed by means of GAUSSIAN 03 W package (Frisch et al., 2004). The selected bond lengths and angles (Table 2.) obtained from semi-empirical and DFT/B3LYP (Becke, 1988; Becke 1993; Lee et al. 1988) are given in Table 2. As can be seen Table 2. the bond lenghts and angles achieved by DFT method are better than those values obtained from PM3 method.

Related literature top

For general background to azo compounds, see: Klaus (2003); Catino & Farris (1985); Zollinger (2003); Bahatti & Seshadri (2004); Taniike et al. (1996); Fadda et al. (1994). For a related structure, see: El-Ghamry et al. (2008). For background to DFT calculations, see: Becke (1988, 1993); Lee et al. (1988); Schmidt & Polik (2007)

Experimental top

A mixture of 3-methylaniline (0.83 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0–5 °C and a solution of sodium nitrite (0.75 g 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-hydroxyacetophenone (1.067 g, 7.8 mmol solution (pH 9) was gradually added to a cooled solution of 3-methylbenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0–5 °C for 2 h in ice bath. The product was recrystallized from ethyl alcohol to obtain solid (E)-2-Acetyl-4- (3-methylphenyldiazenyl)phenol. Crystals of (E)-2-Acetyl-4-(3-methylphenyldiazenyl)phenol were obtained after one day by slow evaporation from acetic acid (yield %45, m.p.= 377–379 K)

Refinement top

All H atoms (except for H1) were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 Å, O—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). The hydroxyl H atom was isotropically refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular hydrogen bond.
(E)-2-Acetyl-4-[(3-methylphenyl)diazenyl]phenol top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20945 reflections
a = 8.6917 (3) Åθ = 1.9–28.0°
b = 10.9728 (3) ŵ = 0.09 mm1
c = 14.6150 (5) ÅT = 150 K
β = 112.881 (3)°Prism, brown
V = 1284.19 (7) Å30.67 × 0.37 × 0.21 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2519 independent reflections
Radiation source: fine-focus sealed tube2034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scanh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.957, Tmax = 0.986l = 1818
16525 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.7485P]
where P = (Fo2 + 2Fc2)/3
2519 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H14N2O2V = 1284.19 (7) Å3
Mr = 254.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6917 (3) ŵ = 0.09 mm1
b = 10.9728 (3) ÅT = 150 K
c = 14.6150 (5) Å0.67 × 0.37 × 0.21 mm
β = 112.881 (3)°
Data collection top
Stoe IPDS II
diffractometer
2519 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2034 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.986Rint = 0.040
16525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
2519 reflectionsΔρmin = 0.26 e Å3
176 parameters
Special details top

Experimental. 330 frames, detector distance = 80 mm

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7697 (3)0.49666 (19)0.56898 (15)0.0354 (5)
C20.7798 (2)0.48461 (19)0.66522 (14)0.0337 (5)
H20.71880.53710.68820.040*
C30.8796 (3)0.39527 (19)0.72861 (15)0.0340 (5)
C40.9690 (3)0.3160 (2)0.69197 (16)0.0385 (5)
C50.9567 (3)0.3271 (2)0.59383 (17)0.0433 (5)
H51.01500.27370.56950.052*
C60.8588 (3)0.4165 (2)0.53369 (15)0.0410 (5)
H60.85170.42400.46880.049*
C70.8963 (3)0.3858 (2)0.83278 (16)0.0396 (5)
C80.8087 (3)0.4746 (3)0.87272 (17)0.0506 (6)
H8A0.83230.45600.94100.076*
H8B0.69050.46950.83500.076*
H8C0.84670.55560.86790.076*
C90.5627 (3)0.7083 (2)0.37340 (17)0.0392 (5)
C100.5540 (3)0.7208 (2)0.27821 (17)0.0460 (6)
H100.61460.66920.25430.055*
C110.4544 (3)0.8107 (2)0.21837 (18)0.0482 (6)
H110.44650.81970.15340.058*
C120.3654 (3)0.8882 (2)0.25587 (17)0.0447 (6)
H120.29700.94790.21480.054*
C130.3764 (3)0.8785 (2)0.35255 (17)0.0426 (5)
C140.4774 (3)0.7866 (2)0.41242 (16)0.0426 (5)
H140.48750.77780.47780.051*
C150.2821 (3)0.9642 (3)0.39089 (19)0.0546 (7)
H15A0.30370.94480.45880.082*
H15B0.16470.95660.35170.082*
H15C0.31711.04630.38680.082*
N10.6655 (2)0.60844 (18)0.42943 (14)0.0435 (5)
N20.6666 (2)0.59649 (18)0.51418 (13)0.0431 (5)
O11.0685 (2)0.22765 (17)0.74768 (14)0.0523 (5)
O20.9858 (2)0.30620 (17)0.88764 (12)0.0522 (5)
H11.055 (4)0.235 (3)0.801 (3)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (10)0.0347 (11)0.0302 (10)0.0037 (8)0.0074 (8)0.0012 (8)
C20.0342 (10)0.0327 (10)0.0320 (10)0.0026 (8)0.0106 (8)0.0006 (8)
C30.0347 (10)0.0348 (11)0.0299 (10)0.0039 (8)0.0098 (8)0.0018 (8)
C40.0386 (11)0.0354 (11)0.0376 (11)0.0018 (9)0.0104 (9)0.0055 (9)
C50.0475 (13)0.0427 (13)0.0401 (12)0.0041 (10)0.0174 (10)0.0026 (10)
C60.0460 (12)0.0458 (13)0.0286 (10)0.0039 (10)0.0118 (9)0.0002 (9)
C70.0359 (11)0.0473 (13)0.0320 (10)0.0061 (10)0.0091 (9)0.0061 (9)
C80.0533 (14)0.0671 (16)0.0326 (11)0.0004 (12)0.0181 (10)0.0003 (11)
C90.0378 (11)0.0343 (11)0.0432 (11)0.0041 (9)0.0133 (9)0.0002 (9)
C100.0511 (13)0.0437 (13)0.0426 (12)0.0030 (11)0.0177 (11)0.0016 (10)
C110.0524 (14)0.0438 (13)0.0435 (12)0.0035 (11)0.0133 (11)0.0023 (10)
C120.0467 (12)0.0375 (12)0.0401 (12)0.0023 (10)0.0062 (10)0.0058 (9)
C130.0404 (12)0.0379 (12)0.0430 (12)0.0038 (10)0.0093 (10)0.0027 (10)
C140.0436 (12)0.0471 (13)0.0341 (11)0.0097 (10)0.0119 (9)0.0002 (9)
C150.0554 (15)0.0574 (16)0.0500 (14)0.0057 (12)0.0196 (12)0.0049 (12)
N10.0464 (11)0.0442 (11)0.0375 (10)0.0024 (9)0.0137 (8)0.0008 (8)
N20.0430 (10)0.0478 (11)0.0309 (9)0.0097 (9)0.0060 (8)0.0069 (8)
O10.0587 (11)0.0491 (10)0.0484 (10)0.0193 (8)0.0201 (9)0.0144 (8)
O20.0554 (10)0.0611 (11)0.0381 (8)0.0056 (8)0.0161 (8)0.0179 (8)
Geometric parameters (Å, º) top
C1—C21.381 (3)C9—C101.371 (3)
C1—C61.396 (3)C9—C141.393 (3)
C1—N21.444 (3)C9—N11.450 (3)
C2—C31.395 (3)C10—C111.378 (3)
C2—H20.9300C10—H100.9300
C3—C41.404 (3)C11—C121.397 (4)
C3—C71.476 (3)C11—H110.9300
C4—O11.343 (3)C12—C131.383 (3)
C4—C51.402 (3)C12—H120.9300
C5—C61.371 (3)C13—C141.398 (3)
C5—H50.9300C13—C151.493 (4)
C6—H60.9300C14—H140.9300
C7—O21.235 (3)C15—H15A0.9600
C7—C81.488 (3)C15—H15B0.9600
C8—H8A0.9600C15—H15C0.9600
C8—H8B0.9600N1—N21.242 (3)
C8—H8C0.9600O1—H10.83 (4)
C2—C1—C6119.43 (19)C10—C9—C14121.7 (2)
C2—C1—N2114.66 (19)C10—C9—N1115.3 (2)
C6—C1—N2125.89 (19)C14—C9—N1123.0 (2)
C1—C2—C3121.3 (2)C9—C10—C11119.3 (2)
C1—C2—H2119.3C9—C10—H10120.4
C3—C2—H2119.3C11—C10—H10120.4
C2—C3—C4118.39 (19)C10—C11—C12119.6 (2)
C2—C3—C7121.4 (2)C10—C11—H11120.2
C4—C3—C7120.20 (19)C12—C11—H11120.2
O1—C4—C5117.2 (2)C13—C12—C11121.7 (2)
O1—C4—C3122.5 (2)C13—C12—H12119.2
C5—C4—C3120.23 (19)C11—C12—H12119.2
C6—C5—C4120.0 (2)C12—C13—C14118.2 (2)
C6—C5—H5120.0C12—C13—C15120.3 (2)
C4—C5—H5120.0C14—C13—C15121.5 (2)
C5—C6—C1120.6 (2)C9—C14—C13119.5 (2)
C5—C6—H6119.7C9—C14—H14120.2
C1—C6—H6119.7C13—C14—H14120.2
O2—C7—C3120.3 (2)C13—C15—H15A109.5
O2—C7—C8119.8 (2)C13—C15—H15B109.5
C3—C7—C8119.90 (19)H15A—C15—H15B109.5
C7—C8—H8A109.5C13—C15—H15C109.5
C7—C8—H8B109.5H15A—C15—H15C109.5
H8A—C8—H8B109.5H15B—C15—H15C109.5
C7—C8—H8C109.5N2—N1—C9114.0 (2)
H8A—C8—H8C109.5N1—N2—C1113.3 (2)
H8B—C8—H8C109.5C4—O1—H1102 (2)
C6—C1—C2—C31.1 (3)C4—C3—C7—C8176.5 (2)
N2—C1—C2—C3177.57 (18)C14—C9—C10—C112.0 (3)
C1—C2—C3—C40.8 (3)N1—C9—C10—C11177.8 (2)
C1—C2—C3—C7177.24 (19)C9—C10—C11—C120.6 (3)
C2—C3—C4—O1179.8 (2)C10—C11—C12—C131.0 (4)
C7—C3—C4—O11.7 (3)C11—C12—C13—C141.3 (3)
C2—C3—C4—C50.2 (3)C11—C12—C13—C15178.9 (2)
C7—C3—C4—C5178.3 (2)C10—C9—C14—C131.8 (3)
O1—C4—C5—C6179.1 (2)N1—C9—C14—C13178.01 (19)
C3—C4—C5—C60.9 (3)C12—C13—C14—C90.1 (3)
C4—C5—C6—C10.5 (3)C15—C13—C14—C9179.7 (2)
C2—C1—C6—C50.5 (3)C10—C9—N1—N2177.6 (2)
N2—C1—C6—C5178.1 (2)C14—C9—N1—N22.2 (3)
C2—C3—C7—O2179.8 (2)C9—N1—N2—C1179.99 (17)
C4—C3—C7—O21.8 (3)C2—C1—N2—N1177.09 (19)
C2—C3—C7—C81.4 (3)C6—C1—N2—N11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (4)1.78 (4)2.567 (3)156 (4)

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.6917 (3), 10.9728 (3), 14.6150 (5)
β (°) 112.881 (3)
V3)1284.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.67 × 0.37 × 0.21
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.957, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
16525, 2519, 2034
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.06
No. of reflections2519
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and GAUSSIAN (Frisch et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (4)1.78 (4)2.567 (3)156 (4)
Selected geometric parameters (Å, °) calculated with X-RAY, PM3 and DFT top
ParametersX-rayPM3DFT/B3LYP*
C4—O11.343 (3)1.3511.331
C7—O21.235 (3)1.2281.242
C7—C81.488 (3)1.5021.513
C13—C151.493 (4)1.4861.511
C1—N21.444 (3)1.4451.411
N1—N21.242 (3)1.2321.263
C9—N11.450 (3)1.4471.417
O2—C7—C8119.8 (2)120.465118.986
O1—C4—C5117.2 (2)115.387118.123
C7—C3—C4—O11.7 (3)-0.0160.002
C9—N1—N2—C1-179.99 (17)-179.965-179.975
C2—C1—N2—N1177.09 (19)-178.543179.996
C10—C9—N1—N2-177.6 (2)-172.651179.997
*6-31G(d,p).
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151–155.  Google Scholar
First citationBecke, A. D. (1988). Phys. Rev. A38, 3098–100.  CrossRef Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCatino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142–144. New York: John Wiley and Sons  Google Scholar
First citationEl-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationKlaus, H. (2003). Industrial dyes, chemistry, properties, applications, pp. 20–35. New York: Wiley-VCH.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B37, 785–789.  CrossRef Web of Science Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro.WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.  CrossRef CAS Web of Science Google Scholar
First citationZollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o559-o560
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds