organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-tert-butyl-5-(2,4-di­chloro­benz­yl)thia­zol-3-ium bromide

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 3 February 2010; accepted 4 February 2010; online 10 February 2010)

The asymmetric unit of the title compound, C14H17Cl2N2S+·Br, contains one cation and two Br ions with site symmetry [\overline1]. The dihedral angle between the planes of the thia­zol and the dichloro­phenyl rings is 77.8 (6)°. In the crystal, the ions are connected by N–H⋯Br hydrogen bonds.

Related literature

For background information and related structures, see: Cao et al. (2007[Cao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.]); Hu et al. (2008[Hu, A. X., Cao, G., Ma, Y. Q., Zhang, J. Y. & Ou, X. M. (2008). Chinese J. Struct. Chem. 27, 1235-1239.]); Marcantonio et al. (2002[Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett. 43, 8845-8848.]); Xu et al. (2007[Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533-o534.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17Cl2N2S+·Br

  • Mr = 396.17

  • Triclinic, [P \overline 1]

  • a = 8.7797 (5) Å

  • b = 9.3898 (5) Å

  • c = 11.8430 (7) Å

  • α = 103.960 (1)°

  • β = 91.102 (1)°

  • γ = 116.648 (1)°

  • V = 837.66 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 173 K

  • 0.43 × 0.31 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.370, Tmax = 0.569

  • 6572 measured reflections

  • 3255 independent reflections

  • 2726 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.099

  • S = 1.08

  • 3255 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Br2 0.88 2.48 3.296 (2) 154
N1—H1⋯Br1i 0.88 2.47 3.286 (2) 153.7
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazol compounds have a wide range of biological activity. The title compund was obtained by the reaction of thiurea and 2-bromo-1-(2,4-dichlorophenyl)-4,4-dimethyl-3-pentanone.

Related literature top

For background information and related structures, see: Cao et al. (2007); Hu et al. (2008); Marcantonio et al. (2002); Xu et al. (2007).

Experimental top

A solution with 0.05 mol of thiurea and 0.05 mol of 2-bromo-1-(2,4-dichlorophenyl)-4,4-dimethyl-3-pentanone in 100 ml of ethanol was refluxed, monitoring by TLC (yield 99.5 %; m.p. 507.6–508.5 K). Crystals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All H atoms were refined using a riding model, with N—H distances of 0.88 and C—H distances ranging from 0.95 to 0.98 Å, and with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels and 50% probability displacement ellipsiods (arbitrary spheres for H atoms).
2-Amino-4-tert-butyl-5-(2,4-dichlorobenzyl)thiazol-3-ium bromide top
Crystal data top
C14H17Cl2N2S+·BrZ = 2
Mr = 396.17F(000) = 400
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Melting point: 508 K
a = 8.7797 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3898 (5) ÅCell parameters from 3934 reflections
c = 11.8430 (7) Åθ = 2.5–27.0°
α = 103.960 (1)°µ = 2.89 mm1
β = 91.102 (1)°T = 173 K
γ = 116.648 (1)°Block, colorless
V = 837.66 (8) Å30.43 × 0.31 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube2726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.370, Tmax = 0.569k = 1111
6572 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.723P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H17Cl2N2S+·Brγ = 116.648 (1)°
Mr = 396.17V = 837.66 (8) Å3
Triclinic, P1Z = 2
a = 8.7797 (5) ÅMo Kα radiation
b = 9.3898 (5) ŵ = 2.89 mm1
c = 11.8430 (7) ÅT = 173 K
α = 103.960 (1)°0.43 × 0.31 × 0.22 mm
β = 91.102 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2726 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.569Rint = 0.021
6572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
3255 reflectionsΔρmin = 0.33 e Å3
187 parameters
Special details top

Experimental. 1H NMR (CDCl3,400 MHz) of 4-tert-butyl-5-(2,4-dichlorobenzyl)thiazol-2-amine: δ (p.p.m.) 1.30(s, 9H, 3×CH3), 4.15(s, 2H, CH2),4.83(br, 2H, NH2),7.08(d, J = 11.2 Hz, 1H, C6H3 6-H),7.18(d, J = 11.2 Hz, 1H, C6H3 5-H),7.38(s, 1H, C6H3 3-H).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50000.00000.50000.05632 (19)
Br20.00000.50000.00000.03684 (15)
Cl10.23215 (12)0.02866 (10)0.20559 (7)0.0408 (2)
Cl20.08968 (10)0.20337 (10)0.26428 (7)0.0404 (2)
S10.32616 (9)0.42272 (8)0.15292 (6)0.02508 (17)
C10.3491 (3)0.5970 (3)0.2559 (2)0.0225 (6)
C20.5883 (3)0.5746 (3)0.3167 (2)0.0211 (5)
C30.5156 (3)0.4406 (3)0.2230 (2)0.0219 (5)
C40.7575 (4)0.6530 (3)0.3986 (2)0.0265 (6)
C50.8920 (5)0.7846 (6)0.3502 (4)0.0696 (14)
H5A0.90560.73240.27150.084*
H5B1.00230.83890.40230.084*
H5C0.85480.86740.34560.084*
C60.7388 (5)0.7336 (6)0.5218 (3)0.0563 (11)
H6A0.70590.81970.51900.084*
H6B0.84870.78360.57360.084*
H6C0.64970.64920.55210.084*
C70.8196 (5)0.5284 (5)0.4073 (4)0.0635 (13)
H7A0.72970.43740.43180.095*
H7B0.92410.58320.46540.095*
H7C0.84510.48410.33040.095*
C80.5707 (4)0.3106 (3)0.1692 (3)0.0276 (6)
H8A0.57960.25650.22930.033*
H8B0.68660.36640.14680.033*
C90.4488 (3)0.1782 (3)0.0618 (2)0.0230 (6)
C100.2912 (4)0.0491 (3)0.0691 (2)0.0245 (6)
C110.1777 (4)0.0692 (3)0.0297 (3)0.0272 (6)
H110.07030.15560.02290.033*
C120.2274 (4)0.0561 (3)0.1384 (2)0.0255 (6)
C130.3842 (4)0.0667 (4)0.1501 (3)0.0266 (6)
H130.41700.07120.22570.032*
C140.4927 (4)0.1830 (3)0.0495 (3)0.0271 (6)
H140.60030.26860.05700.033*
N10.4907 (3)0.6601 (3)0.33357 (19)0.0215 (5)
H10.52110.75030.39200.026*
N20.2419 (3)0.6618 (3)0.2595 (2)0.0304 (6)
H2A0.26260.75180.31550.037*
H2B0.15010.61480.20580.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0824 (4)0.0488 (3)0.0407 (3)0.0505 (3)0.0187 (3)0.0205 (2)
Br20.0325 (2)0.0267 (2)0.0393 (3)0.00678 (19)0.01243 (18)0.00437 (18)
Cl10.0576 (5)0.0352 (4)0.0299 (4)0.0215 (4)0.0178 (4)0.0092 (3)
Cl20.0381 (4)0.0391 (4)0.0337 (4)0.0203 (4)0.0137 (3)0.0106 (3)
S10.0235 (3)0.0200 (3)0.0266 (4)0.0115 (3)0.0062 (3)0.0042 (3)
C10.0233 (13)0.0222 (13)0.0209 (13)0.0118 (11)0.0017 (10)0.0022 (11)
C20.0217 (13)0.0184 (13)0.0209 (13)0.0094 (11)0.0019 (10)0.0018 (10)
C30.0195 (13)0.0192 (13)0.0236 (13)0.0087 (11)0.0002 (10)0.0009 (11)
C40.0242 (14)0.0234 (14)0.0251 (14)0.0111 (12)0.0050 (11)0.0043 (11)
C50.0270 (19)0.079 (3)0.074 (3)0.003 (2)0.0070 (19)0.030 (3)
C60.051 (2)0.077 (3)0.0328 (18)0.040 (2)0.0144 (16)0.0150 (18)
C70.057 (3)0.049 (2)0.074 (3)0.035 (2)0.035 (2)0.017 (2)
C80.0285 (15)0.0226 (14)0.0292 (15)0.0157 (12)0.0023 (12)0.0041 (12)
C90.0257 (14)0.0197 (13)0.0266 (14)0.0162 (12)0.0010 (11)0.0006 (11)
C100.0295 (15)0.0241 (14)0.0229 (13)0.0172 (12)0.0055 (11)0.0020 (11)
C110.0248 (14)0.0201 (13)0.0349 (16)0.0114 (12)0.0033 (12)0.0029 (12)
C120.0278 (14)0.0213 (14)0.0262 (14)0.0158 (12)0.0055 (11)0.0035 (11)
C130.0348 (16)0.0282 (15)0.0239 (14)0.0201 (13)0.0045 (12)0.0080 (12)
C140.0259 (15)0.0211 (14)0.0327 (15)0.0112 (12)0.0056 (12)0.0043 (12)
N10.0241 (11)0.0183 (11)0.0201 (11)0.0115 (10)0.0016 (9)0.0011 (9)
N20.0290 (13)0.0294 (13)0.0322 (13)0.0193 (11)0.0043 (10)0.0034 (11)
Geometric parameters (Å, º) top
Cl1—C101.736 (3)C7—H7A0.9800
Cl2—C121.742 (3)C7—H7B0.9800
S1—C11.714 (3)C7—H7C0.9800
S1—C31.764 (3)C8—C91.516 (4)
C1—N21.328 (4)C8—H8A0.9900
C1—N11.332 (3)C8—H8B0.9900
C2—C31.342 (4)C9—C141.386 (4)
C2—N11.402 (3)C9—C101.394 (4)
C2—C41.519 (4)C10—C111.389 (4)
C3—C81.515 (4)C11—C121.383 (4)
C4—C71.519 (5)C11—H110.9500
C4—C51.519 (5)C12—C131.380 (4)
C4—C61.522 (4)C13—C141.384 (4)
C5—H5A0.9800C13—H130.9500
C5—H5B0.9800C14—H140.9500
C5—H5C0.9800N1—H10.8800
C6—H6A0.9800N2—H2A0.8800
C6—H6B0.9800N2—H2B0.8800
C6—H6C0.9800
C1—S1—C390.62 (13)H7A—C7—H7C109.5
N2—C1—N1123.9 (2)H7B—C7—H7C109.5
N2—C1—S1125.4 (2)C3—C8—C9113.8 (2)
N1—C1—S1110.71 (19)C3—C8—H8A108.8
C3—C2—N1111.2 (2)C9—C8—H8A108.8
C3—C2—C4132.1 (2)C3—C8—H8B108.8
N1—C2—C4116.6 (2)C9—C8—H8B108.8
C2—C3—C8131.2 (3)H8A—C8—H8B107.7
C2—C3—S1111.4 (2)C14—C9—C10117.3 (2)
C8—C3—S1117.33 (19)C14—C9—C8119.8 (3)
C7—C4—C2112.7 (2)C10—C9—C8122.9 (3)
C7—C4—C5108.5 (3)C11—C10—C9122.7 (3)
C2—C4—C5107.7 (3)C11—C10—Cl1117.3 (2)
C7—C4—C6108.1 (3)C9—C10—Cl1120.0 (2)
C2—C4—C6110.3 (2)C12—C11—C10117.3 (3)
C5—C4—C6109.5 (3)C12—C11—H11121.3
C4—C5—H5A109.5C10—C11—H11121.3
C4—C5—H5B109.5C13—C12—C11122.2 (3)
H5A—C5—H5B109.5C13—C12—Cl2119.1 (2)
C4—C5—H5C109.5C11—C12—Cl2118.7 (2)
H5A—C5—H5C109.5C12—C13—C14118.6 (3)
H5B—C5—H5C109.5C12—C13—H13120.7
C4—C6—H6A109.5C14—C13—H13120.7
C4—C6—H6B109.5C13—C14—C9121.9 (3)
H6A—C6—H6B109.5C13—C14—H14119.1
C4—C6—H6C109.5C9—C14—H14119.1
H6A—C6—H6C109.5C1—N1—C2116.1 (2)
H6B—C6—H6C109.5C1—N1—H1122.0
C4—C7—H7A109.5C2—N1—H1122.0
C4—C7—H7B109.5C1—N2—H2A120.0
H7A—C7—H7B109.5C1—N2—H2B120.0
C4—C7—H7C109.5H2A—N2—H2B120.0
C3—S1—C1—N2179.0 (3)C14—C9—C10—C111.8 (4)
C3—S1—C1—N10.8 (2)C8—C9—C10—C11178.1 (2)
N1—C2—C3—C8179.8 (3)C14—C9—C10—Cl1176.7 (2)
C4—C2—C3—C84.9 (5)C8—C9—C10—Cl13.4 (4)
N1—C2—C3—S11.3 (3)C9—C10—C11—C120.7 (4)
C4—C2—C3—S1173.7 (2)Cl1—C10—C11—C12177.9 (2)
C1—S1—C3—C21.2 (2)C10—C11—C12—C131.2 (4)
C1—S1—C3—C8180.0 (2)C10—C11—C12—Cl2179.3 (2)
C3—C2—C4—C727.2 (5)C11—C12—C13—C141.9 (4)
N1—C2—C4—C7158.0 (3)Cl2—C12—C13—C14179.9 (2)
C3—C2—C4—C592.4 (4)C12—C13—C14—C90.7 (4)
N1—C2—C4—C582.3 (3)C10—C9—C14—C131.1 (4)
C3—C2—C4—C6148.1 (3)C8—C9—C14—C13178.8 (3)
N1—C2—C4—C637.1 (4)N2—C1—N1—C2179.6 (3)
C2—C3—C8—C9180.0 (3)S1—C1—N1—C20.3 (3)
S1—C3—C8—C91.5 (3)C3—C2—N1—C10.6 (3)
C3—C8—C9—C14103.4 (3)C4—C2—N1—C1175.2 (2)
C3—C8—C9—C1076.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br20.882.483.296 (2)154
N1—H1···Br1i0.882.473.286 (2)153.7
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H17Cl2N2S+·Br
Mr396.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7797 (5), 9.3898 (5), 11.8430 (7)
α, β, γ (°)103.960 (1), 91.102 (1), 116.648 (1)
V3)837.66 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.43 × 0.31 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.370, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
6572, 3255, 2726
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.099, 1.08
No. of reflections3255
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br20.882.483.296 (2)153.6
N1—H1···Br1i0.882.473.286 (2)153.7
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was funded by the SIT program of Hunan University.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, A. X., Cao, G., Ma, Y. Q., Zhang, J. Y. & Ou, X. M. (2008). Chinese J. Struct. Chem. 27, 1235–1239.  CAS Google Scholar
First citationMarcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett. 43, 8845–8848.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533–o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds