metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tris­­(2,5-di­methyl­benzene-1,4-­di­carboxyl­ato)bis­­(pyridine)trizinc(II)]

aDepartment of Chemistry, West Anhui University, Lu' an 237012, People's Republic of China, and bDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: wangfangkuo2491@126.com

(Received 26 October 2009; accepted 7 February 2010; online 13 February 2010)

The asymmetric unit of the title polymeric compound, [Zn3(C10H8O4)3(C5H5N)2]n or [Zn3(dmbdc)3(py)2]n (dmbdc = 2,5-dimethyl­benzene­dicarboxyl­ate; py = pyridine) contains two Zn(II) ions, one of which is located on an inversion centre, one and a half 2,5-dimethyl­benzene­dicarboxyl­ate ligands and one pyridine ligand. Each ZnO6 octa­hedron is sandwiched between two ZnO4N square-pyramids, forming a trinuclear zinc secondary building unit (SBU); each SBU is further linked by six 2,5-dimethyl­benzene­dicarboxyl­ate ligands with six adjacent trinuclear zinc SBU's, forming a two-dimensional layer structure with a (3,6) net. One of the three zinc ions is octa­hedrally coordinated and the other two are square-pyramidally coordinated. The coordination modes for 2,5-dimethyl­benzene­dicarboxyl­ates are bis­(bidentate) or bidentate-tridentate.

Related literature

For the potential applications of metal-organic frameworks formed from terephthalic acid and its derivatives, see Wang et al. (2007[Wang, F. K., Song, X. X., Yang, S. Y., Huang, R. B. & Zheng, L. S. (2007). Inorg. Chem. Commun. 10, 1198-1201.]); Grzesiak et al. (2006[Grzesiak, A. L., Uribe, F. J., Ockwig, N. W., Yaghi, O. M., Bi, W. & Matzger, A. J. (2006). Angew. Chem. Int. Ed. 45, 2553-2556.]); Rosi et al. (2005[Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504-1518.]); Burrows et al. (2005[Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm. 7, 548-550.]); Liao et al. (2006[Liao, J. H., Lee, T. J. & Su, C. T. (2006). Inorg. Chem. Commun. 9, 201-204.]); Yang et al. (2002[Yang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229-3231.]); Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeff, M. & Yaghi, O. M. (2002). Science , 295, 469-472.]). For related structures, see: Wang et al. (2008[Wang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 11, 1211-1215.]); Zhou et al. (2009[Zhou, D. S., Wang, F. K., Yang, S. Y., Xie, Z. X. & Huang, R. B. (2009). CrystEngComm, 10, 2548-2554.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C10H8O4)3(C5H5N)2]

  • Mr = 930.80

  • Monoclinic, C 2/c

  • a = 22.3372 (15) Å

  • b = 10.2643 (7) Å

  • c = 16.9261 (11) Å

  • β = 105.140 (1)°

  • V = 3746.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 299 K

  • 0.12 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]) Tmin = 0.798, Tmax = 0.874

  • 16107 measured reflections

  • 4487 independent reflections

  • 3559 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.156

  • S = 1.08

  • 4487 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138 Oak Ridge National Laboratory.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Terephthalic acid and its derivatives have been used to construct metal-organic frameworks. Some of these compounds display interesting structures and have potential applications (Wang et al., 2007; Grzesiak et al., 2006; Rosi et al., 2005; Burrows et al., 2005; Liao et al., 2006; Yang et al., 2002; Eddaoudi et al.,2002; Zhou et al., 2009). In this paper we report a coordination polymer [Zn3(dmbdc)3(py)2]n, 1 (dmbdc=2,5-dimethylbenzenedicarboxylate; py=pyridine) synthesized by hydrothermal reaction.

The structure of 1 contains trinuclear zinc SBU's (SBU = Secondary Building Unit) (Fig. 1), in which each ZnO6 octahedron sandwiched between two ZnO4N square-pyramids. The three Zn ions exhibit two different coordination geometries: Zn1 coordinates to four oxygen atoms from three carboxylates in the plane and a nitrogen atom from py (py = pyridine) at the apex giving a distorted square-pyramidal geometry; Zn2 atom is coordinated by six oxygen atoms from six dmbdc anions (dmbdc=2,5-dimethylbenzenedicarboxylate) to constitute a slightly distorted octahedral environment. Coordination polymers with similar but different trinuclear zinc SBU's have been reported in recent years (Wang et al., 2008). There are two coordination modes for the dmbdc in the structure of 1, one is bis(bidentate), and the other one adopts bidentate and tridentate for each of its carboxyl groups. However, each trinuclear zinc SBU is further linked by six dmbdc ligands to six adjacent trinuclear zinc SBU's to form a two-dimensional sheet with a (3,6) net parallel to bc plane (Fig. 2). The two-dimensional sheets are further packed in an ABAB··· mode along b axis (Fig. 3). Coordinated pyridine molecules lie in the both sides of trinuclear zinc SBU's respectively.

Related literature top

For the potential applications of metal-organic frameworks formed from terephthalic acid and its derivatives, see Wang et al. (2007); Grzesiak et al. (2006); Rosi et al. (2005); Burrows et al. (2005); Liao et al. (2006); Yang et al. (2002); Eddaoudi et al. (2002). For related structures, see: Wang et al. (2008); Zhou et al. (2009).

Experimental top

A suspension of 2,5-dimethylbenzenedicarboxylic acid (H2dmbdc, 0.097 g, 0.50 mmol) in H2O (12 ml), pyridine was slowly added to the solution until pH was adjusted to 7, then Zn(NO3)2.6H2O (0.15 g, 0.50 mmol) was added. The mixture was placed in a 20 ml Teflon-lined vessel, heated to 120°C at the rate of 0.2°C/min, and kept at 120°C for 3 days, then slowly cooled down to room temperature at the rate of 0.1°C/min. Colorless platelet crystals (0.062 g, yield 40%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C40H34N2O12Zn3, found (calc.) C 51.52 (51.61), H 3.66 (3.69), N 2.99 (3.01). FTIR (KBr, cm-1): 3454 (m), 3031 (w), 2961 (m), 2739 (w), 1922 (w), 1820 (m),1452 (m), 1399 (s), 1347 (m), 1158 (m), 1074 (s), 918 (s), 797 (versus).

Refinement top

The aromatic H atoms were generated geometrically (C—H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The methyl H atoms were generated geometrically (C—H 0.96 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.5 times those of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The connection of the trinuclear zinc SBU's. (Hydrogen atoms are omitted for clarity.)
[Figure 2] Fig. 2. A perspective view of the two-dimensional (3, 6) net of 1 on bc plane. (Hydrogen atoms are omitted for clarity.)
[Figure 3] Fig. 3. View of two-dimensional (3, 6) net of 1 stacked by ABAB mode along b axis. (Hydrogen atoms are omitted for clarity.)
Poly[tris(2,5-dimethylbenzene-1,4-dicarboxylato)bis(pyridine)trizinc(II)] top
Crystal data top
[Zn3(C10H8O4)3(C5H5N)2]F(000) = 1896
Mr = 930.80Dx = 1.650 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2781 reflections
a = 22.3372 (15) Åθ = 2.2–25.0°
b = 10.2643 (7) ŵ = 1.97 mm1
c = 16.9261 (11) ÅT = 299 K
β = 105.140 (1)°Block, colorless
V = 3746.0 (4) Å30.12 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
4487 independent reflections
Radiation source: fine-focus sealed tube3559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scanθmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2830
Tmin = 0.798, Tmax = 0.874k = 1313
16107 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P]
where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn3(C10H8O4)3(C5H5N)2]V = 3746.0 (4) Å3
Mr = 930.80Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.3372 (15) ŵ = 1.97 mm1
b = 10.2643 (7) ÅT = 299 K
c = 16.9261 (11) Å0.12 × 0.08 × 0.07 mm
β = 105.140 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3559 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.874Rint = 0.059
16107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P]
where P = (Fo2 + 2Fc2)/3
4487 reflectionsΔρmax = 0.74 e Å3
262 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.40381 (2)0.67147 (5)0.55736 (3)0.02859 (17)
Zn20.25000.75000.50000.02465 (19)
O10.40247 (16)0.7797 (3)0.4622 (2)0.0379 (8)
O20.31369 (15)0.8673 (3)0.4686 (2)0.0347 (7)
O30.29594 (17)1.2435 (4)0.12228 (19)0.0425 (9)
O40.39737 (16)1.2197 (4)0.1478 (2)0.0426 (9)
O50.37531 (18)0.4905 (4)0.5713 (3)0.0557 (11)
O60.30025 (18)0.5819 (3)0.4821 (2)0.0444 (9)
N10.49686 (18)0.6283 (4)0.5907 (3)0.0397 (10)
C10.3588 (2)0.9476 (5)0.3687 (3)0.0309 (10)
C20.4095 (2)0.9664 (5)0.3361 (3)0.0368 (11)
C30.4018 (2)1.0506 (5)0.2701 (3)0.0362 (11)
H3A0.43541.06450.24830.043*
C40.3476 (2)1.1143 (4)0.2354 (3)0.0297 (9)
C50.2970 (2)1.0983 (5)0.2683 (3)0.0310 (9)
C60.3049 (2)1.0147 (5)0.3343 (3)0.0325 (10)
H6A0.27161.00310.35700.039*
C70.3581 (2)0.8590 (4)0.4383 (3)0.0297 (9)
C80.4722 (3)0.9037 (8)0.3691 (5)0.074 (2)
H8A0.50090.93820.34090.111*
H8B0.46860.81120.36080.111*
H8C0.48710.92180.42650.111*
C90.3457 (2)1.1994 (4)0.1631 (3)0.0308 (10)
C100.2367 (3)1.1692 (6)0.2392 (4)0.0521 (15)
H10A0.20901.14240.27090.078*
H10B0.21871.14930.18250.078*
H10C0.24391.26130.24540.078*
C110.3226 (2)0.4861 (5)0.5232 (3)0.0400 (12)
C120.2872 (2)0.3605 (4)0.5142 (3)0.0322 (10)
C130.2293 (2)0.3618 (4)0.4598 (3)0.0363 (11)
H13A0.21540.43920.43270.044*
C140.3094 (2)0.2458 (5)0.5566 (3)0.0381 (11)
C150.3713 (3)0.2313 (6)0.6163 (4)0.0630 (18)
H15A0.37680.14270.63510.095*
H15B0.37380.28810.66210.095*
H15C0.40330.25370.59030.095*
C160.5188 (3)0.5242 (8)0.6329 (6)0.103 (4)
H16A0.49110.46430.64470.124*
C170.5805 (4)0.5003 (10)0.6601 (8)0.134 (5)
H17A0.59440.42560.69060.161*
C180.6214 (3)0.5840 (8)0.6433 (6)0.081 (2)
H18A0.66380.57000.66340.098*
C190.6002 (3)0.6877 (7)0.5972 (4)0.0612 (17)
H19A0.62740.74530.58210.073*
C200.5379 (3)0.7074 (6)0.5725 (4)0.0536 (15)
H20A0.52340.78080.54110.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0302 (3)0.0257 (3)0.0305 (3)0.0001 (2)0.0090 (2)0.0002 (2)
Zn20.0236 (4)0.0256 (4)0.0249 (3)0.0023 (3)0.0067 (3)0.0003 (3)
O10.0374 (18)0.0410 (19)0.0380 (18)0.0055 (15)0.0149 (15)0.0153 (15)
O20.0362 (18)0.0304 (17)0.0437 (19)0.0038 (14)0.0213 (15)0.0055 (14)
O30.042 (2)0.060 (2)0.0234 (15)0.0153 (17)0.0050 (15)0.0087 (16)
O40.0374 (19)0.053 (2)0.0365 (18)0.0024 (16)0.0089 (15)0.0189 (16)
O50.042 (2)0.035 (2)0.087 (3)0.0140 (17)0.011 (2)0.007 (2)
O60.065 (2)0.0217 (16)0.058 (2)0.0018 (16)0.038 (2)0.0008 (16)
N10.028 (2)0.037 (2)0.052 (3)0.0043 (17)0.0073 (18)0.002 (2)
C10.029 (2)0.036 (2)0.030 (2)0.0017 (18)0.0097 (18)0.0038 (19)
C20.031 (2)0.040 (3)0.044 (3)0.004 (2)0.018 (2)0.009 (2)
C30.032 (2)0.045 (3)0.036 (2)0.002 (2)0.016 (2)0.009 (2)
C40.030 (2)0.031 (2)0.026 (2)0.0008 (18)0.0042 (18)0.0016 (18)
C50.027 (2)0.033 (2)0.031 (2)0.0005 (18)0.0057 (18)0.0025 (19)
C60.029 (2)0.035 (2)0.037 (2)0.0010 (19)0.0134 (19)0.004 (2)
C70.031 (2)0.026 (2)0.033 (2)0.0048 (18)0.0113 (19)0.0013 (18)
C80.041 (3)0.100 (5)0.092 (5)0.031 (4)0.037 (3)0.060 (5)
C90.036 (3)0.028 (2)0.027 (2)0.0017 (19)0.0062 (19)0.0019 (18)
C100.036 (3)0.070 (4)0.051 (3)0.013 (3)0.014 (2)0.020 (3)
C110.045 (3)0.027 (2)0.055 (3)0.005 (2)0.027 (3)0.011 (2)
C120.032 (2)0.021 (2)0.049 (3)0.0012 (17)0.019 (2)0.0027 (19)
C130.034 (2)0.023 (2)0.053 (3)0.0055 (18)0.012 (2)0.007 (2)
C140.033 (2)0.031 (2)0.050 (3)0.0039 (19)0.009 (2)0.002 (2)
C150.042 (3)0.049 (4)0.084 (5)0.002 (3)0.008 (3)0.014 (3)
C160.047 (4)0.083 (6)0.166 (9)0.003 (4)0.006 (5)0.071 (6)
C170.045 (4)0.109 (7)0.231 (13)0.015 (5)0.006 (6)0.098 (9)
C180.037 (3)0.081 (5)0.121 (7)0.012 (4)0.010 (4)0.002 (5)
C190.038 (3)0.078 (5)0.069 (4)0.011 (3)0.015 (3)0.014 (4)
C200.043 (3)0.059 (4)0.059 (4)0.006 (3)0.014 (3)0.007 (3)
Geometric parameters (Å, º) top
Zn1—O4i1.931 (3)C4—C91.496 (6)
Zn1—O11.950 (3)C5—C61.384 (6)
Zn1—O51.998 (4)C5—C101.495 (7)
Zn1—N12.055 (4)C6—H6A0.9300
Zn1—C112.588 (5)C8—H8A0.9600
Zn2—O22.037 (3)C8—H8B0.9600
Zn2—O2ii2.037 (3)C8—H8C0.9600
Zn2—O3iii2.057 (3)C10—H10A0.9600
Zn2—O3i2.057 (3)C10—H10B0.9600
Zn2—O62.123 (3)C10—H10C0.9600
Zn2—O6ii2.123 (3)C11—C121.500 (6)
O1—C71.265 (6)C12—C131.378 (7)
O2—C71.233 (5)C12—C141.401 (7)
O3—C91.231 (6)C13—C14vi1.385 (7)
O3—Zn2iv2.057 (3)C13—H13A0.9300
O4—C91.264 (6)C14—C13vi1.385 (7)
O4—Zn1v1.931 (3)C14—C151.492 (7)
O5—C111.245 (6)C15—H15A0.9600
O6—C111.233 (6)C15—H15B0.9600
N1—C161.308 (8)C15—H15C0.9600
N1—C201.320 (7)C16—C171.356 (10)
C1—C61.378 (6)C16—H16A0.9300
C1—C21.395 (6)C17—C181.337 (11)
C1—C71.492 (6)C17—H17A0.9300
C2—C31.387 (7)C18—C191.332 (10)
C2—C81.511 (7)C18—H18A0.9300
C3—C41.367 (6)C19—C201.359 (8)
C3—H3A0.9300C19—H19A0.9300
C4—C51.393 (6)C20—H20A0.9300
O4i—Zn1—O1109.70 (17)O2—C7—C1117.6 (4)
O4i—Zn1—O5110.64 (18)O1—C7—C1118.4 (4)
O1—Zn1—O5133.67 (17)C2—C8—H8A109.5
O4i—Zn1—N1100.73 (17)C2—C8—H8B109.5
O1—Zn1—N198.40 (16)H8A—C8—H8B109.5
O5—Zn1—N195.60 (17)C2—C8—H8C109.5
O4i—Zn1—C11114.20 (16)H8A—C8—H8C109.5
O1—Zn1—C11112.05 (17)H8B—C8—H8C109.5
O5—Zn1—C1127.91 (16)O3—C9—O4124.3 (4)
N1—Zn1—C11120.16 (17)O3—C9—C4120.2 (4)
O2—Zn2—O2ii180.00 (18)O4—C9—C4115.5 (4)
O2—Zn2—O3iii87.46 (14)C5—C10—H10A109.5
O2ii—Zn2—O3iii92.54 (14)C5—C10—H10B109.5
O2—Zn2—O3i92.54 (14)H10A—C10—H10B109.5
O2ii—Zn2—O3i87.46 (14)C5—C10—H10C109.5
O3iii—Zn2—O3i180.000 (1)H10A—C10—H10C109.5
O2—Zn2—O690.67 (13)H10B—C10—H10C109.5
O2ii—Zn2—O689.33 (13)O6—C11—O5121.0 (5)
O3iii—Zn2—O688.47 (15)O6—C11—C12120.2 (5)
O3i—Zn2—O691.53 (15)O5—C11—C12118.8 (5)
O2—Zn2—O6ii89.33 (13)O6—C11—Zn172.3 (3)
O2ii—Zn2—O6ii90.67 (13)O5—C11—Zn148.7 (2)
O3iii—Zn2—O6ii91.53 (15)C12—C11—Zn1167.2 (4)
O3i—Zn2—O6ii88.47 (15)C13—C12—C14119.8 (4)
O6—Zn2—O6ii180.0 (2)C13—C12—C11116.0 (4)
C7—O1—Zn1118.2 (3)C14—C12—C11124.3 (5)
C7—O2—Zn2139.4 (3)C12—C13—C14vi123.7 (4)
C9—O3—Zn2iv135.7 (3)C12—C13—H13A118.2
C9—O4—Zn1v121.2 (3)C14vi—C13—H13A118.2
C11—O5—Zn1103.4 (3)C13vi—C14—C12116.6 (5)
C11—O6—Zn2136.0 (3)C13vi—C14—C15118.4 (5)
C16—N1—C20116.5 (5)C12—C14—C15125.0 (5)
C16—N1—Zn1122.3 (4)C14—C15—H15A109.5
C20—N1—Zn1121.2 (4)C14—C15—H15B109.5
C6—C1—C2118.3 (4)H15A—C15—H15B109.5
C6—C1—C7116.7 (4)C14—C15—H15C109.5
C2—C1—C7125.1 (4)H15A—C15—H15C109.5
C3—C2—C1117.6 (4)H15B—C15—H15C109.5
C3—C2—C8118.1 (4)N1—C16—C17122.5 (7)
C1—C2—C8124.4 (4)N1—C16—H16A118.8
C4—C3—C2123.6 (4)C17—C16—H16A118.8
C4—C3—H3A118.2C18—C17—C16120.0 (8)
C2—C3—H3A118.2C18—C17—H17A120.0
C3—C4—C5119.5 (4)C16—C17—H17A120.0
C3—C4—C9117.6 (4)C19—C18—C17118.8 (7)
C5—C4—C9122.9 (4)C19—C18—H18A120.6
C6—C5—C4116.7 (4)C17—C18—H18A120.6
C6—C5—C10118.8 (4)C18—C19—C20118.5 (7)
C4—C5—C10124.5 (4)C18—C19—H19A120.7
C1—C6—C5124.3 (4)C20—C19—H19A120.7
C1—C6—H6A117.8N1—C20—C19123.7 (6)
C5—C6—H6A117.8N1—C20—H20A118.2
O2—C7—O1124.0 (4)C19—C20—H20A118.2
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x, y+2, z1/2; (vi) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn3(C10H8O4)3(C5H5N)2]
Mr930.80
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)22.3372 (15), 10.2643 (7), 16.9261 (11)
β (°) 105.140 (1)
V3)3746.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.12 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.798, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
16107, 4487, 3559
Rint0.059
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.156, 1.08
No. of reflections4487
No. of parameters262
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0282P)2 + 12.5564P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.74, 0.63

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationBurrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm. 7, 548–550.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeff, M. & Yaghi, O. M. (2002). Science , 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrzesiak, A. L., Uribe, F. J., Ockwig, N. W., Yaghi, O. M., Bi, W. & Matzger, A. J. (2006). Angew. Chem. Int. Ed. 45, 2553–2556.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138 Oak Ridge National Laboratory.  Google Scholar
First citationLiao, J. H., Lee, T. J. & Su, C. T. (2006). Inorg. Chem. Commun. 9, 201–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc. 127, 1504–1518.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F. K., Song, X. X., Yang, S. Y., Huang, R. B. & Zheng, L. S. (2007). Inorg. Chem. Commun. 10, 1198–1201.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. K., Yang, S. Y., Huang, R. B., Zheng, L. S. & Batten, S. R. (2008). CrystEngComm, 11, 1211–1215.  Web of Science CSD CrossRef Google Scholar
First citationYang, S. Y., Long, L. S., Jiang, Y. B., Huang, R. B. & Zheng, L. S. (2002). Chem. Mater. 14, 3229–3231.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, D. S., Wang, F. K., Yang, S. Y., Xie, Z. X. & Huang, R. B. (2009). CrystEngComm, 10, 2548–2554.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds