organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4-[4-(di­methyl­amino)phen­yl]-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aCollege of Life Science, Yulin University, Yulin, Shaanxi 719000, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, People's Republic of China, and cCollege of Life Science, Ningxia University, Yinchuan 750021, People's Republic of China
*Correspondence e-mail: baiming.s@163.com

(Received 3 January 2010; accepted 28 January 2010; online 6 February 2010)

In the title compound, C21H28N2O4, the dihydro­pyridine ring adopts a flattened boat conformation. The mean plane of the dihydro­pyridine ring and the attached benzene ring form a dihedral angle of 85.1 (1) Å. One of two ethyl fragments is disordered between two conformations in a 0.67 (4):0.33 (4) ratio. In the crystal structure, mol­ecules related by translation along the a axis are linked into chains via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of compounds containing substituted 1,4-dihydro­pyridine ring systems, see: Triggle et al.(1980[Triggle, A. M., Shefter, E. J. & Triggle, D. (1980). J. Med. Chem. 23, 1442-1445.]); Henry (2004[Henry, G. D. (2004). Tetrahedron, 60, 6043-6061.]). For a related structure, see Sun et al. (2006[Sun, F.-X., Zhao, H. & Du, H.-X. (2006). Acta Cryst. E62, o5448-o5449.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28N2O4

  • Mr = 372.45

  • Monoclinic, P 21 /n

  • a = 7.5023 (7) Å

  • b = 14.9797 (14) Å

  • c = 18.0691 (19) Å

  • β = 91.021 (1)°

  • V = 2030.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.47 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.961

  • 10007 measured reflections

  • 3572 independent reflections

  • 1680 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.202

  • S = 1.02

  • 3572 reflections

  • 270 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.18 3.036 (4) 173
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted 1,4-dihydropyridine ring system exhibit diverse pharmacological activities (Triggle et al., 1980). In addition, several of these compounds were discovered to be highly selective ligands for adenosine receptors, which were recently recognized as potential targets for the development of new drugs for the treatment of Parkinson's disease, hypoxia/ischemia, asthma, kidney disease, epilepsy, and cancer (Henry et al., 2004). In continuation of our ongoing program directed to the development of pyridine chemistry, we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compound ethyl 5-carboxy-2,6-dimethyl-4-(4-nitrophenyl) -1,4-dihydropyridine-3-carboxylate (Sun et al., 2006). The carboxylate and methyl groups lie to the each side of the dihydropyridine ring. The dihedral angle between the planes C2/C3/C4 and C1/N1/C5 is 36.9 (3) Å. The dihydropyridine ring adopts a flattened boat conformation and the plane of the base of the boat (C1/C2/C4/C5) forms a dihedral angle of 83.73 (13) Å with the benzene ring.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [100].

Related literature top

For the pharmacological activity of compounds containing substituted 1,4-dihydropyridine ring systems, see: Triggle et al.(1980); Henry et al. (2004). For a related structure, see Sun et al. (2006).

Experimental top

4-(N, N-dimethyl)benzaldehyde (10.0 mmol), 20 ml methanol, ethyl acetoacetate (20 mmol) and NH4HCO3 (6 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystalized from methanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C21H28N2O4: C 67.72, H 7.58, N 7.52%; found: C 67.82, H 7.73, N 7.43%.

Refinement top

All H atoms were placed in geometrically idealized positions ( C-H of methyl distances is 0.96 Å , C-H of methylene distances is 0.97 Å , C-H of methine distances is 0.98 Å and aromatic C-H distances is 0.93 Å, N-H distances is 0.86 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 U-1.5eq(C, N) . Atoms C8, C9 were treated as disordered between two positions, with refined occupancies of 0.33 (4) and 0.67 (4).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids. Only major parts of disordered atoms are shown. H atoms omitted for clarity.
Diethyl 4-[4-(dimethylamino)phenyl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C21H28N2O4F(000) = 800
Mr = 372.45Dx = 1.218 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5023 (7) ÅCell parameters from 1665 reflections
b = 14.9797 (14) Åθ = 2.6–20.9°
c = 18.0691 (19) ŵ = 0.08 mm1
β = 91.021 (1)°T = 298 K
V = 2030.3 (3) Å3Needle, red
Z = 40.49 × 0.48 × 0.47 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3572 independent reflections
Radiation source: fine-focus sealed tube1680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.960, Tmax = 0.961k = 1117
10007 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0653P)2 + 1.4769P]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H28N2O4V = 2030.3 (3) Å3
Mr = 372.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5023 (7) ŵ = 0.08 mm1
b = 14.9797 (14) ÅT = 298 K
c = 18.0691 (19) Å0.49 × 0.48 × 0.47 mm
β = 91.021 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3572 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1680 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.961Rint = 0.067
10007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
3572 reflectionsΔρmin = 0.18 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.0562 (4)0.1513 (2)1.06111 (16)0.0535 (9)
H11.16380.16181.07580.064*
N20.6296 (5)0.5330 (2)0.8972 (2)0.0785 (11)
O10.6518 (4)0.0907 (2)0.86907 (16)0.0810 (10)
O20.9341 (5)0.0681 (3)0.84207 (18)0.1139 (14)
O30.6311 (3)0.1834 (2)1.20424 (14)0.0693 (9)
O40.4439 (3)0.1727 (2)1.10883 (14)0.0679 (9)
C11.0290 (5)0.1244 (2)0.9891 (2)0.0495 (10)
C20.8620 (5)0.1274 (2)0.96009 (18)0.0464 (9)
C30.7131 (5)0.1728 (2)1.00311 (17)0.0436 (9)
H30.60200.14020.99310.052*
C40.7524 (4)0.1684 (2)1.08551 (17)0.0414 (9)
C50.9222 (5)0.1625 (3)1.11124 (18)0.0474 (9)
C61.1942 (5)0.0920 (3)0.9527 (2)0.0677 (12)
H6A1.17360.03340.93270.102*
H6B1.29020.08960.98850.102*
H6C1.22500.13210.91350.102*
C70.8257 (7)0.0925 (3)0.8863 (2)0.0648 (12)
C80.624 (3)0.0697 (13)0.7887 (8)0.077 (4)0.67 (4)
H8A0.68100.11410.75820.092*0.67 (4)
H8B0.67230.01150.77710.092*0.67 (4)
C90.428 (2)0.0708 (15)0.7756 (8)0.095 (5)0.67 (4)
H9A0.37320.02680.80650.142*0.67 (4)
H9B0.40220.05740.72460.142*0.67 (4)
H9C0.38200.12880.78730.142*0.67 (4)
C8'0.557 (5)0.036 (2)0.814 (2)0.079 (9)0.33 (4)
H8'10.45250.00740.83450.094*0.33 (4)
H8'20.63380.00930.79290.094*0.33 (4)
C9'0.508 (6)0.107 (3)0.7585 (16)0.098 (10)0.33 (4)
H9'10.40270.13810.77450.146*0.33 (4)
H9'20.48440.08050.71110.146*0.33 (4)
H9'30.60410.14910.75470.146*0.33 (4)
C100.6878 (4)0.2688 (2)0.97650 (17)0.0420 (9)
C110.7898 (5)0.3382 (3)1.0039 (2)0.0577 (11)
H110.87380.32631.04110.069*
C120.7721 (5)0.4242 (3)0.9787 (2)0.0619 (11)
H120.84450.46860.99900.074*
C130.6486 (5)0.4466 (3)0.9232 (2)0.0553 (10)
C140.5446 (5)0.3772 (3)0.8956 (2)0.0629 (11)
H140.45920.38880.85890.076*
C150.5659 (5)0.2911 (3)0.9218 (2)0.0584 (11)
H150.49470.24620.90150.070*
C160.7323 (7)0.6039 (3)0.9282 (3)0.0911 (16)
H16A0.71420.60640.98060.137*
H16B0.69590.65930.90600.137*
H16C0.85630.59370.91890.137*
C170.4833 (7)0.5557 (3)0.8486 (3)0.0834 (15)
H17A0.49690.52570.80210.125*
H17B0.48150.61900.84070.125*
H17C0.37350.53740.87050.125*
C180.5961 (5)0.1746 (2)1.1321 (2)0.0467 (9)
C190.4839 (5)0.1922 (3)1.2541 (2)0.0735 (14)
H19A0.39740.14521.24480.088*
H19B0.42530.24931.24660.088*
C200.5528 (7)0.1859 (4)1.3293 (3)0.113 (2)
H20A0.60720.12851.33670.170*
H20B0.45700.19321.36320.170*
H20C0.64000.23191.33770.170*
C210.9918 (5)0.1636 (3)1.1893 (2)0.0708 (13)
H21A0.93420.21031.21620.106*
H21B1.11810.17391.18950.106*
H21C0.96770.10711.21230.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0339 (17)0.075 (2)0.0513 (19)0.0034 (15)0.0033 (15)0.0005 (16)
N20.089 (3)0.055 (2)0.091 (3)0.002 (2)0.019 (2)0.017 (2)
O10.085 (2)0.086 (2)0.071 (2)0.0062 (18)0.0216 (17)0.0345 (17)
O20.108 (3)0.169 (4)0.065 (2)0.033 (3)0.006 (2)0.044 (2)
O30.0432 (16)0.118 (3)0.0468 (17)0.0008 (15)0.0103 (13)0.0104 (15)
O40.0372 (16)0.109 (2)0.0575 (17)0.0035 (15)0.0019 (13)0.0050 (15)
C10.043 (2)0.056 (2)0.050 (2)0.0050 (19)0.0102 (18)0.0038 (19)
C20.051 (2)0.048 (2)0.041 (2)0.0027 (18)0.0047 (18)0.0003 (17)
C30.039 (2)0.053 (2)0.0386 (19)0.0056 (17)0.0000 (16)0.0004 (17)
C40.037 (2)0.050 (2)0.0371 (19)0.0003 (17)0.0017 (16)0.0013 (16)
C50.040 (2)0.060 (3)0.043 (2)0.0017 (18)0.0032 (18)0.0021 (18)
C60.056 (3)0.084 (3)0.064 (3)0.004 (2)0.020 (2)0.003 (2)
C70.070 (3)0.070 (3)0.054 (3)0.007 (2)0.007 (2)0.009 (2)
C80.081 (10)0.092 (9)0.058 (7)0.008 (6)0.009 (6)0.029 (6)
C90.079 (10)0.134 (13)0.071 (7)0.020 (7)0.011 (6)0.032 (7)
C8'0.085 (18)0.079 (17)0.071 (16)0.012 (11)0.005 (13)0.023 (13)
C9'0.10 (3)0.12 (2)0.075 (14)0.004 (16)0.022 (15)0.003 (14)
C100.041 (2)0.051 (2)0.0346 (19)0.0020 (18)0.0004 (16)0.0033 (16)
C110.054 (2)0.059 (3)0.059 (2)0.006 (2)0.0139 (19)0.009 (2)
C120.063 (3)0.055 (3)0.066 (3)0.012 (2)0.016 (2)0.006 (2)
C130.058 (3)0.054 (3)0.053 (2)0.003 (2)0.002 (2)0.010 (2)
C140.061 (3)0.066 (3)0.061 (3)0.000 (2)0.018 (2)0.010 (2)
C150.062 (3)0.056 (3)0.056 (2)0.005 (2)0.018 (2)0.002 (2)
C160.106 (4)0.065 (3)0.102 (4)0.010 (3)0.005 (3)0.013 (3)
C170.100 (4)0.069 (3)0.081 (3)0.014 (3)0.007 (3)0.019 (3)
C180.041 (2)0.057 (3)0.041 (2)0.0039 (18)0.0010 (18)0.0046 (18)
C190.048 (3)0.113 (4)0.059 (3)0.006 (2)0.018 (2)0.006 (2)
C200.095 (4)0.186 (7)0.059 (3)0.004 (4)0.022 (3)0.018 (3)
C210.048 (2)0.112 (4)0.052 (2)0.013 (2)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C11.374 (4)C8'—C9'1.51 (7)
N1—C51.375 (4)C8'—H8'10.9700
N1—H10.8600C8'—H8'20.9700
N2—C131.384 (5)C9'—H9'10.9600
N2—C161.421 (5)C9'—H9'20.9600
N2—C171.434 (5)C9'—H9'30.9600
O1—C71.336 (5)C10—C151.376 (5)
O1—C8'1.47 (2)C10—C111.377 (5)
O1—C81.497 (11)C11—C121.372 (5)
O2—C71.208 (5)C11—H110.9300
O3—C181.332 (4)C12—C131.393 (5)
O3—C191.444 (4)C12—H120.9300
O4—C181.210 (4)C13—C141.388 (5)
C1—C21.350 (5)C14—C151.381 (5)
C1—C61.495 (5)C14—H140.9300
C2—C71.453 (5)C15—H150.9300
C2—C31.531 (5)C16—H16A0.9600
C3—C41.514 (4)C16—H16B0.9600
C3—C101.528 (5)C16—H16C0.9600
C3—H30.9800C17—H17A0.9600
C4—C51.352 (5)C17—H17B0.9600
C4—C181.459 (5)C17—H17C0.9600
C5—C211.495 (5)C19—C201.447 (6)
C6—H6A0.9600C19—H19A0.9700
C6—H6B0.9600C19—H19B0.9700
C6—H6C0.9600C20—H20A0.9600
C8—C91.48 (3)C20—H20B0.9600
C8—H8A0.9700C20—H20C0.9600
C8—H8B0.9700C21—H21A0.9600
C9—H9A0.9600C21—H21B0.9600
C9—H9B0.9600C21—H21C0.9600
C9—H9C0.9600
C1—N1—C5124.2 (3)H9'1—C9'—H9'3109.5
C1—N1—H1117.9H9'2—C9'—H9'3109.5
C5—N1—H1117.9C15—C10—C11115.7 (3)
C13—N2—C16120.9 (4)C15—C10—C3122.1 (3)
C13—N2—C17120.2 (4)C11—C10—C3122.2 (3)
C16—N2—C17117.9 (4)C12—C11—C10122.6 (4)
C7—O1—C8'129.0 (13)C12—C11—H11118.7
C7—O1—C8110.6 (8)C10—C11—H11118.7
C8'—O1—C833.4 (12)C11—C12—C13121.7 (4)
C18—O3—C19118.7 (3)C11—C12—H12119.2
C2—C1—N1118.6 (3)C13—C12—H12119.2
C2—C1—C6127.7 (4)N2—C13—C14121.7 (4)
N1—C1—C6113.7 (3)N2—C13—C12122.2 (4)
C1—C2—C7120.1 (4)C14—C13—C12116.1 (4)
C1—C2—C3119.9 (3)C15—C14—C13121.0 (4)
C7—C2—C3120.0 (3)C15—C14—H14119.5
C4—C3—C10111.8 (3)C13—C14—H14119.5
C4—C3—C2110.4 (3)C10—C15—C14122.9 (4)
C10—C3—C2110.2 (3)C10—C15—H15118.5
C4—C3—H3108.1C14—C15—H15118.5
C10—C3—H3108.1N2—C16—H16A109.5
C2—C3—H3108.1N2—C16—H16B109.5
C5—C4—C18124.6 (3)H16A—C16—H16B109.5
C5—C4—C3120.5 (3)N2—C16—H16C109.5
C18—C4—C3114.9 (3)H16A—C16—H16C109.5
C4—C5—N1118.5 (3)H16B—C16—H16C109.5
C4—C5—C21129.4 (3)N2—C17—H17A109.5
N1—C5—C21112.1 (3)N2—C17—H17B109.5
C1—C6—H6A109.5H17A—C17—H17B109.5
C1—C6—H6B109.5N2—C17—H17C109.5
H6A—C6—H6B109.5H17A—C17—H17C109.5
C1—C6—H6C109.5H17B—C17—H17C109.5
H6A—C6—H6C109.5O4—C18—O3120.7 (3)
H6B—C6—H6C109.5O4—C18—C4124.1 (3)
O2—C7—O1120.4 (4)O3—C18—C4115.1 (3)
O2—C7—C2126.8 (4)O3—C19—C20108.4 (4)
O1—C7—C2112.8 (4)O3—C19—H19A110.0
C9—C8—O1106.0 (14)C20—C19—H19A110.0
C9—C8—H8A110.5O3—C19—H19B110.0
O1—C8—H8A110.5C20—C19—H19B110.0
C9—C8—H8B110.5H19A—C19—H19B108.4
O1—C8—H8B110.5C19—C20—H20A109.5
H8A—C8—H8B108.7C19—C20—H20B109.5
O1—C8'—C9'99 (3)H20A—C20—H20B109.5
O1—C8'—H8'1111.9C19—C20—H20C109.5
C9'—C8'—H8'1111.9H20A—C20—H20C109.5
O1—C8'—H8'2111.9H20B—C20—H20C109.5
C9'—C8'—H8'2111.9C5—C21—H21A109.5
H8'1—C8'—H8'2109.6C5—C21—H21B109.5
C8'—C9'—H9'1109.5H21A—C21—H21B109.5
C8'—C9'—H9'2109.5C5—C21—H21C109.5
H9'1—C9'—H9'2109.5H21A—C21—H21C109.5
C8'—C9'—H9'3109.5H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.183.036 (4)173
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H28N2O4
Mr372.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.5023 (7), 14.9797 (14), 18.0691 (19)
β (°) 91.021 (1)
V3)2030.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.48 × 0.47
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10007, 3572, 1680
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.202, 1.02
No. of reflections3572
No. of parameters270
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.183.036 (4)173.3
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of the College of Life Science, Ningxia University (grant No. 081040).

References

First citationHenry, G. D. (2004). Tetrahedron, 60, 6043-6061.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, F.-X., Zhao, H. & Du, H.-X. (2006). Acta Cryst. E62, o5448–o5449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTriggle, A. M., Shefter, E. J. & Triggle, D. (1980). J. Med. Chem. 23, 1442–1445.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds