organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Phenyl­isoxazol-5-yl)methanol

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: yugp2005@yahoo.com.cn

(Received 25 January 2010; accepted 27 January 2010; online 6 February 2010)

In the title compound, C10H9NO2, the isoxazole and phenyl rings form a dihedral angle of 25.82 (3)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into ribbons propagating along [001]. The crystal packing is further stabilized by weak C—H⋯O and C—H⋯N inter­actions.

Related literature

For related structures, see: Tian & Li (2006[Tian, D.-M. & Li, X. (2006). Acta Cryst. E62, o5335-o5336.]); Tang et al. (2006[Tang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298-o1299.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO2

  • Mr = 175.18

  • Monoclinic, C 2/c

  • a = 41.03 (4) Å

  • b = 5.694 (5) Å

  • c = 7.348 (7) Å

  • β = 98.51 (2)°

  • V = 1698 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.55 × 0.45 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 3328 measured reflections

  • 1500 independent reflections

  • 1182 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.119

  • S = 1.05

  • 1500 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯O2i 0.86 1.89 2.669 (4) 151
O2—H2A⋯O2ii 0.88 2.09 2.677 (5) 124
C8—H8⋯N1iii 0.93 2.61 3.542 (4) 177
C10—H10B⋯O2iv 0.97 2.58 3.352 (4) 137
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our study of isoxazole derivatives (Tang et al., 2006), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles of the isoxazole ring are normal and comparable to those reported for related structures (Tian & Li, 2006; Tang et al., 2006). The mean planes of the benzene (C1—C6) and isoxazole (C7—C9/N1/O1) rings make a dihedral angle of 25.82 (3)°. Intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into ribbons extended along the c axis. The crystal packing is further stabilized by weak C—H···O and C—H···N interactions (Table 1).

Related literature top

For related structures, see: Tian & Li (2006); Tang et al. (2006).

Experimental top

A round-bottomed flask was charged with benzaldoxime(5.0 g, 41.3 mmol) in 20 ml N, N-dimethyl formamide, and then N-chlorosuccinimide (1.20 g, 9.1 mmol) was added to the solution. Heating until N-chlorosuccinimide was solved, and the mixture was stirred at room temperature for 20 min, into the above solution was added N-chlorosuccinimide (4.80 g, 36.4 mmol) in batches under 308 K. After 3 h, propargyl alcohol ( 2.78 g, 49.6 mmol) was added, then the saturated solution of CuSO4.5H2O (0.62 g, 2.48 mmol) and L-ascorbic acid (1.75 g, 9.92 mmol) were added also. The solution of K2CO3 (3.14 g, 45.5 mmol) was added to the mixture and was stirred for 1 h. The reaction mixture was diluted with the saturated solution of ethylenediaminetetraacetic acid, and then was extracted with dichloromethane (3 times per 50 ml), and the extracts were dried over anhydrous Na2SO4. The solution was evaporated to afford a residue, which was purified by a silica-gel column chromatography (petroleum ether / ethyl acetate, 3:1 by volume) to afford a pale yellow solid (yield: 61.7%, m.p. 325–326 K). The crystals of (I) were obtained from petroleum ether / ethyl acetate / dichloromethane (3:1:1, V/V/V) by slow evaporation at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, O—H = 0.86, 0.88 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5Ueq(C, O) The hydroxyl H atom was treated as disordered over two positions with equal occupancies fixed to 0.5.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(3-Phenylisoxazol-5-yl)methanol top
Crystal data top
C10H9NO2F(000) = 736
Mr = 175.18Dx = 1.371 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1357 reflections
a = 41.03 (4) Åθ = 3.0–28.1°
b = 5.694 (5) ŵ = 0.10 mm1
c = 7.348 (7) ÅT = 298 K
β = 98.51 (2)°Plate, colourless
V = 1698 (3) Å30.55 × 0.45 × 0.02 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
1182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
phi and ω scansh = 4843
3328 measured reflectionsk = 65
1500 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.7771P]
where P = (Fo2 + 2Fc2)/3
1500 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H9NO2V = 1698 (3) Å3
Mr = 175.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 41.03 (4) ŵ = 0.10 mm1
b = 5.694 (5) ÅT = 298 K
c = 7.348 (7) Å0.55 × 0.45 × 0.02 mm
β = 98.51 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1182 reflections with I > 2σ(I)
3328 measured reflectionsRint = 0.059
1500 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1500 reflectionsΔρmin = 0.23 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.15963 (5)0.9135 (4)0.2841 (2)0.0424 (5)
H10.14391.02930.24970.051*
C20.19149 (5)0.9476 (4)0.2556 (3)0.0470 (6)
H20.19731.08550.20090.056*
C30.21488 (5)0.7785 (4)0.3078 (3)0.0484 (6)
H30.23660.80220.28890.058*
C40.20619 (5)0.5744 (4)0.3878 (3)0.0457 (6)
H40.22210.46040.42370.055*
C50.17421 (5)0.5374 (4)0.4152 (2)0.0403 (5)
H50.16850.39800.46820.048*
C60.15054 (5)0.7074 (3)0.3639 (2)0.0352 (5)
C70.11668 (5)0.6746 (4)0.4006 (2)0.0370 (5)
C80.09363 (5)0.8478 (4)0.4305 (3)0.0438 (5)
H80.09611.00980.42360.053*
C90.06769 (5)0.7318 (4)0.4705 (3)0.0460 (6)
C100.03668 (5)0.8061 (5)0.5327 (3)0.0629 (7)
H10A0.03770.76460.66150.076*
H10B0.03500.97570.52370.076*
N10.10486 (4)0.4641 (3)0.4183 (2)0.0501 (5)
O10.07313 (3)0.4982 (3)0.4643 (2)0.0543 (4)
O20.00792 (4)0.7069 (3)0.4334 (3)0.0808 (6)
H2B0.00460.55890.43960.121*0.50
H2A0.01670.66980.33500.121*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (13)0.0391 (13)0.0412 (10)0.0012 (10)0.0003 (9)0.0019 (10)
C20.0546 (14)0.0453 (14)0.0412 (11)0.0104 (12)0.0076 (9)0.0033 (10)
C30.0405 (12)0.0642 (17)0.0415 (11)0.0082 (12)0.0098 (9)0.0076 (11)
C40.0425 (13)0.0513 (16)0.0438 (11)0.0086 (11)0.0081 (9)0.0007 (11)
C50.0471 (12)0.0362 (13)0.0377 (10)0.0027 (10)0.0066 (8)0.0018 (9)
C60.0393 (11)0.0346 (12)0.0308 (9)0.0001 (10)0.0018 (7)0.0019 (8)
C70.0381 (11)0.0332 (12)0.0384 (10)0.0013 (10)0.0015 (8)0.0001 (9)
C80.0378 (12)0.0346 (13)0.0571 (12)0.0000 (11)0.0006 (9)0.0002 (10)
C90.0384 (12)0.0413 (14)0.0562 (12)0.0046 (11)0.0001 (9)0.0029 (11)
C100.0400 (13)0.0669 (19)0.0812 (16)0.0018 (13)0.0068 (11)0.0049 (14)
N10.0402 (11)0.0408 (12)0.0702 (11)0.0002 (9)0.0112 (8)0.0017 (9)
O10.0395 (9)0.0458 (11)0.0781 (10)0.0054 (8)0.0105 (7)0.0018 (8)
O20.0340 (9)0.0818 (15)0.1241 (15)0.0034 (9)0.0039 (9)0.0057 (12)
Geometric parameters (Å, º) top
C1—C21.368 (3)C7—N11.306 (3)
C1—C61.387 (3)C7—C81.406 (3)
C1—H10.9300C8—C91.322 (3)
C2—C31.373 (3)C8—H80.9300
C2—H20.9300C9—O11.351 (3)
C3—C41.373 (3)C9—C101.476 (3)
C3—H30.9300C10—O21.410 (3)
C4—C51.373 (3)C10—H10A0.9700
C4—H40.9300C10—H10B0.9700
C5—C61.383 (3)N1—O11.406 (2)
C5—H50.9300O2—H2B0.8561
C6—C71.466 (3)O2—H2A0.8798
C2—C1—C6120.5 (2)N1—C7—C6120.73 (18)
C2—C1—H1119.7C8—C7—C6128.09 (19)
C6—C1—H1119.7C9—C8—C7105.4 (2)
C1—C2—C3120.1 (2)C9—C8—H8127.3
C1—C2—H2119.9C7—C8—H8127.3
C3—C2—H2119.9C8—C9—O1110.0 (2)
C2—C3—C4119.9 (2)C8—C9—C10133.2 (2)
C2—C3—H3120.1O1—C9—C10116.5 (2)
C4—C3—H3120.1O2—C10—C9114.7 (2)
C5—C4—C3120.4 (2)O2—C10—H10A108.6
C5—C4—H4119.8C9—C10—H10A108.6
C3—C4—H4119.8O2—C10—H10B108.6
C4—C5—C6120.1 (2)C9—C10—H10B108.6
C4—C5—H5120.0H10A—C10—H10B107.6
C6—C5—H5120.0C7—N1—O1105.53 (16)
C5—C6—C1119.00 (19)C9—O1—N1107.91 (15)
C5—C6—C7120.49 (19)C10—O2—H2B119.6
C1—C6—C7120.46 (18)C10—O2—H2A96.2
N1—C7—C8111.11 (19)H2B—O2—H2A84.0
C6—C1—C2—C30.7 (3)N1—C7—C8—C91.2 (2)
C1—C2—C3—C40.3 (3)C6—C7—C8—C9175.60 (17)
C2—C3—C4—C50.4 (3)C7—C8—C9—O10.9 (2)
C3—C4—C5—C60.7 (3)C7—C8—C9—C10173.2 (2)
C4—C5—C6—C10.4 (3)C8—C9—C10—O2131.4 (3)
C4—C5—C6—C7177.04 (16)O1—C9—C10—O254.8 (3)
C2—C1—C6—C50.3 (3)C8—C7—N1—O11.0 (2)
C2—C1—C6—C7177.73 (16)C6—C7—N1—O1176.11 (15)
C5—C6—C7—N124.9 (3)C8—C9—O1—N10.4 (2)
C1—C6—C7—N1157.73 (18)C10—C9—O1—N1174.81 (17)
C5—C6—C7—C8151.63 (19)C7—N1—O1—C90.4 (2)
C1—C6—C7—C825.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O2i0.861.892.669 (4)151
O2—H2A···O2ii0.882.092.677 (5)124
C8—H8···N1iii0.932.613.542 (4)177
C10—H10B···O2iv0.972.583.352 (4)137
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H9NO2
Mr175.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)41.03 (4), 5.694 (5), 7.348 (7)
β (°) 98.51 (2)
V3)1698 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.45 × 0.02
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3328, 1500, 1182
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.119, 1.05
No. of reflections1500
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···O2i0.861.892.669 (4)150.7
O2—H2A···O2ii0.882.092.677 (5)123.5
C8—H8···N1iii0.932.613.542 (4)177.4
C10—H10B···O2iv0.972.583.352 (4)137.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y+2, z+1.
 

Acknowledgements

The authors express sincere gratitude to Xi-Zhao Wang for valuable discussions on the preparation of this manuscript.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, L.-D., Zhang, D.-T., Sun, F.-G., Duan, G.-Y. & Wang, J.-W. (2006). Acta Cryst. E62, o1298–o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTian, D.-M. & Li, X. (2006). Acta Cryst. E62, o5335–o5336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds