metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1R)-3-Benzoyl-1,7,7-tri­methyl­bi­cyclo­[2.2.1]heptan-2-onato-κ2O,O′]chlorido(η6-p-cymene)ruthenium(II)

aLaboratoire de Chimie de Coordination, Faculté des Sciences-Semlalia, BP 2390, 40001 Marrakech, Morocco, and bDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Campus Universitario del Río San Pedro, Puerto Real 11510, Spain
*Correspondence e-mail: pedro.valerga@uca.es

(Received 5 February 2010; accepted 8 February 2010; online 13 February 2010)

The asymmetric unit of the title compound, [RuCl(C10H14)(C17H19O2)], contains two diastereomers. In both, the RuII ion has a tetra­hedral coordination, formed by two O atoms of the camphor-derived ligand and the p-cymene and Cl ligands. In the crystal structure, weak inter­molecular C—H⋯Cl inter­actions link the mol­ecules into columns propagated along [010].

Related literature

For camphor-derived 1,3-diketonato ligands, see: Togni (1990[Togni, A. (1990). Organometallics 9, 3106-3213.]); Togni et al. (1993[Togni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc. 115, 1908-1915.]). For applications of their transition metal complexes as therapeutic drugs, see: Guo & Sadler (1999[Guo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. Engl. 38, 1512-1531.]). For related structures, see: Ait Ali et al. (2006[Ait Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160-m3162.]); Spannenberg et al. (2002[Spannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 549-550.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H14)(C17H19O2)]

  • Mr = 526.05

  • Triclinic, P 1

  • a = 9.833 (2) Å

  • b = 10.572 (2) Å

  • c = 12.785 (3) Å

  • α = 108.13 (3)°

  • β = 97.62 (3)°

  • γ = 102.54 (3)°

  • V = 1203.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 100 K

  • 0.56 × 0.31 × 0.24 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.762, Tmax = 0.961

  • 10110 measured reflections

  • 7861 independent reflections

  • 7619 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.06

  • 7861 reflections

  • 547 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −1.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2564 Friedel pairs

  • Flack parameter: 0.03 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C43—H43⋯Cl1 0.95 2.69 3.605 (7) 162
C14—H14⋯Cl2 0.95 2.78 3.731 (7) 178

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Camphor-derived 1,3-diketonato ligands are a potentially attractive class of ligands in organometallic development, because these compounds are readily synthesized, easily varied (Togni et al., 1990, 1993) and some of their corresponding transition metal complexes can be used as therapeutic drugs (Guo et al., 1999). The crystallographic study of these compounds is of great interest in view of search for structure–activity relationships. This paper is a continuation of our X-ray crystal structure studies on rhodium and ruthenium complexes incorporating camphor-derived 1,3-diketonato ligands (Spannenberg et al., 2002; Ait Ali et al., 2006).

The title complex (I) was synthesized by addition of [RuCl2(p-cymene)]2 to a mixture of (1R)-3-Benzoyl-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-one, also named (1R)-3-benzoyl-camphor, and Na2CO3 in anhydrous THF. The neutral complex [RuCl(η6-p-cymene){κ2O,O'-(1R)-3-benzoyl- camphor}] was obtained. The metal centre shows tetrahedral coordination formed by two O atoms of the camphor-derived ligand, and the p-cymene and Cl ligands. Two independent molecules in the unit cell have opposite configuration at the metallic centre (R and S), but both of them keep the initial configuration at the two chiral carbon atoms in the (1R)-3-benzoyl-camphor free ligand being, consequently, diasteomers and only partially enantiomers.

In the crystal structure, weak intermolecular C—H···Cl interactions (Table 2) link the molecules into columns propagated in direction [010].

Related literature top

For camphor-derived 1,3-diketonato ligands, see: Togni (1990); Togni et al. (1993). For applications of their transition metal complexes as therapeutic drugs,

see: Guo & Sadler (1999). For related structures, see: Ait Ali et al. (2006); Spannenberg et al. (2002).

Experimental top

A solution of [RuCl2(p-cymene)]2 (100 mg, 0.163 mmol) in 10 ml of THF was added to a suspension of (1R)-(+)-3-benzoyl-camphor (83.13 mg, 0.326 mmol) and Na2CO3 (103 mg, 0.978 mmol) in 10 ml of THF. The mixture was stirred for 3 h at room temperature. It was then evaporated to dryness under reduced pressure. The residue was extracted with CH2Cl2. The recovered filtrate was evaporated to dryness and lead to an orange solid with an output of 90%. The solid was recrystallized in diethylether. 1H NMR (δ, p.p.m.): 0.76 (s, 6H), 0.9 (s, 1H), 1.22 (d, 6H), 1.23–1.3 (m, 4H), 2.2 (s, 3H), 2.5 (d, 1H), 2.8 (m, 1H), 5.11 (d, 2H), 5.34 (d, 2H), 7.18–7.47 (m, 5H, Ar). 13C{1H} NMR (δ, p.p.m.): 9.8, 10.23, 17.93, 18.4, 19.28, 20.1, 20.4, 22.74, 27.47, 28.59,(28.71), 30.80, 31.09, (31.17), 50.20, 52.23, 58.35, 78.88, 82.74, 98.82, 99.16, 112.71, 113.68, 128.7, 129.16, 140.03, 174.11, 200.48, 201.01

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.99Å) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. First independent molecule of (I) with the atomic numbering and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Second independent molecule of (I) with the atomic numbering and 50% probability displacement ellipsoids.
[(1R)-3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-onato-κ2O,O']chlorido(η6-p-cymene)ruthenium(II) top
Crystal data top
[RuCl(C10H14)(C17H19O2)]Z = 2
Mr = 526.05F(000) = 544
Triclinic, P1Dx = 1.451 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.833 (2) ÅCell parameters from 7193 reflections
b = 10.572 (2) Åθ = 2.5–27.6°
c = 12.785 (3) ŵ = 0.78 mm1
α = 108.13 (3)°T = 100 K
β = 97.62 (3)°Prism, orange
γ = 102.54 (3)°0.56 × 0.31 × 0.24 mm
V = 1203.9 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
7861 independent reflections
Radiation source: fine-focus sealed tube7619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
1700 ω scan frames, 0.3 deg, 10 secθmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 912
Tmin = 0.762, Tmax = 0.961k = 1313
10110 measured reflectionsl = 1616
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0375P)2 + 2.2953P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.95 e Å3
7861 reflectionsΔρmin = 1.34 e Å3
547 parametersAbsolute structure: Flack (1983), 2564 Friedel pairs
3 restraintsAbsolute structure parameter: 0.03 (4)
Crystal data top
[RuCl(C10H14)(C17H19O2)]γ = 102.54 (3)°
Mr = 526.05V = 1203.9 (6) Å3
Triclinic, P1Z = 2
a = 9.833 (2) ÅMo Kα radiation
b = 10.572 (2) ŵ = 0.78 mm1
c = 12.785 (3) ÅT = 100 K
α = 108.13 (3)°0.56 × 0.31 × 0.24 mm
β = 97.62 (3)°
Data collection top
Bruker SMART APEX
diffractometer
7861 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
7619 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.961Rint = 0.020
10110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.95 e Å3
S = 1.06Δρmin = 1.34 e Å3
7861 reflectionsAbsolute structure: Flack (1983), 2564 Friedel pairs
547 parametersAbsolute structure parameter: 0.03 (4)
3 restraints
Special details top

Experimental. Bruker SMART APEX 3-circle diffractometer with CCD area detector, sealed X-ray tube, graphite monochromator. A hemisphere of the reciprocal space up to theta(max) = 27.56 deg was measured by omega scan frames with delta(omega) = 0.30 deg and 10 sec per frame, 1700 frames were recorded using program SMART (Bruker). Frame data evaluation and integration were done with program SAINT+(Bruker); Lattice parameters by least-squares refinement of the geometric parameters of the strongest reflections with program SAINT + (Bruker). Correction for absorption and crystal decay (insignificant) were applied by semi-empirical method from equivalents using program SADABS (G.M. Sheldrick, version of 2001, Univ. of Goettingen, Germany). Data reduction was done with program XPREP (BRUKER).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against unique set of reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.14364 (3)0.83889 (3)0.44793 (2)0.01034 (11)
Cl10.3688 (2)0.7926 (2)0.49401 (15)0.0171 (4)
O10.0772 (6)0.7426 (6)0.5592 (4)0.0124 (11)
O20.0867 (6)0.6470 (5)0.3196 (4)0.0165 (12)
C10.0099 (9)0.9619 (9)0.4831 (7)0.0163 (12)
C20.0163 (10)0.9068 (9)0.3639 (6)0.0167 (11)
H20.10580.85540.31420.020*
C30.1045 (9)0.9267 (8)0.3198 (6)0.0167 (11)
H30.09590.88820.24070.020*
C40.2426 (9)1.0043 (9)0.3907 (7)0.0163 (12)
C50.2486 (9)1.0584 (8)0.5096 (7)0.0169 (13)
H50.33811.10890.55960.020*
C60.1293 (8)1.0392 (8)0.5525 (6)0.0123 (12)
H60.13831.07850.63160.015*
C70.1356 (8)0.9335 (9)0.5332 (7)0.0178 (17)
H70.10030.93360.61030.021*
C80.2081 (11)1.0542 (10)0.5469 (9)0.033 (2)
H8A0.24231.05760.47250.050*
H8B0.13861.14230.59360.050*
H8C0.28891.03820.58300.050*
C90.2507 (9)0.7956 (9)0.4684 (8)0.0239 (18)
H9A0.32810.78740.50890.036*
H9B0.20840.71840.46230.036*
H9C0.28860.79330.39280.036*
C100.3731 (9)1.0207 (9)0.3443 (8)0.0237 (18)
H10A0.41181.11820.35400.036*
H10B0.34950.96430.26400.036*
H10C0.44430.99040.38440.036*
C110.0264 (8)0.6110 (8)0.5354 (6)0.0142 (15)
C120.0215 (8)0.5737 (8)0.6320 (6)0.0155 (15)
C130.0235 (8)0.4731 (8)0.6649 (6)0.0174 (15)
H130.08100.42400.62360.021*
C140.0142 (8)0.4439 (8)0.7564 (6)0.0240 (16)
H140.01660.37490.77830.029*
C150.0977 (8)0.5162 (8)0.8164 (6)0.0216 (15)
H150.12260.49740.88040.026*
C160.1451 (9)0.6153 (9)0.7845 (6)0.0241 (17)
H160.20460.66230.82480.029*
C170.1043 (8)0.6456 (8)0.6919 (6)0.0152 (15)
H170.13380.71560.67060.018*
C180.0064 (8)0.5095 (8)0.4311 (6)0.0140 (14)
C190.0341 (8)0.5356 (8)0.3317 (6)0.0126 (14)
C200.0353 (6)0.4018 (5)0.2333 (4)0.0164 (10)
C210.0127 (6)0.2937 (5)0.2883 (4)0.0183 (10)
C220.0807 (6)0.3561 (5)0.3890 (4)0.0172 (10)
H220.08000.31090.44710.021*
C230.2285 (6)0.3514 (5)0.3298 (4)0.0192 (10)
H23A0.26830.42050.37860.023*
H23B0.29570.25830.30750.023*
C240.1973 (5)0.3875 (5)0.2251 (4)0.0175 (10)
H24A0.21920.47530.22740.021*
H24B0.25420.31290.15460.021*
C250.0181 (9)0.3967 (9)0.1269 (6)0.0229 (18)
H25A0.00180.47390.10480.034*
H25B0.03340.30900.06640.034*
H25C0.12040.40390.14050.034*
C260.0953 (9)0.1438 (8)0.2157 (7)0.0236 (17)
H26A0.07900.08230.25690.035*
H26B0.06200.11680.14520.035*
H26C0.19740.13660.19890.035*
C270.1446 (6)0.3002 (6)0.3233 (5)0.0255 (12)
H27A0.19890.39600.36760.038*
H27B0.18240.26700.25580.038*
H27C0.15290.24170.36880.038*
Ru20.32581 (3)0.12766 (3)0.89620 (2)0.00965 (11)
Cl20.1007 (2)0.1732 (2)0.84692 (15)0.0175 (4)
O30.3958 (6)0.2229 (5)0.7863 (4)0.0128 (11)
O40.3740 (6)0.3211 (6)1.0232 (4)0.0120 (11)
C280.4792 (8)0.0063 (8)0.8589 (6)0.0120 (10)
C290.4905 (9)0.0603 (8)0.9753 (6)0.0140 (12)
H290.58090.11131.02370.017*
C300.3639 (8)0.0387 (8)1.0228 (6)0.0134 (12)
H300.37330.07771.10200.016*
C310.2307 (8)0.0369 (8)0.9555 (6)0.0120 (10)
C320.2195 (8)0.0920 (8)0.8365 (6)0.0127 (11)
H320.12850.14210.78870.015*
C330.3411 (9)0.0737 (8)0.7879 (6)0.0127 (11)
H330.33140.11410.70880.015*
C340.6049 (8)0.0281 (9)0.8037 (7)0.0173 (16)
H340.56840.02860.72710.021*
C350.7144 (10)0.1657 (10)0.8690 (8)0.030 (2)
H35A0.66540.23670.89710.045*
H35B0.77400.19190.81940.045*
H35C0.77450.15740.93280.045*
C360.6654 (10)0.0953 (11)0.7886 (8)0.030 (2)
H36A0.69360.10350.86210.046*
H36B0.74890.08230.75490.046*
H36C0.59270.17970.73900.046*
C370.0993 (10)0.0538 (10)1.0041 (7)0.027 (2)
H37A0.07760.14311.01520.040*
H37B0.01860.05050.95200.040*
H37C0.11620.02111.07660.040*
C380.4313 (8)0.3543 (8)0.8048 (6)0.0110 (14)
C390.4676 (8)0.3908 (8)0.7070 (6)0.0116 (13)
C400.5570 (8)0.3281 (8)0.6450 (6)0.0164 (15)
H400.59600.26310.66690.020*
C410.5898 (8)0.3590 (8)0.5526 (6)0.0195 (15)
H410.65460.31900.51360.023*
C420.5275 (9)0.4492 (9)0.5163 (6)0.031 (2)
H420.54630.46700.45050.037*
C430.4391 (8)0.5120 (7)0.5758 (6)0.0229 (16)
H430.39800.57420.55130.028*
C440.4092 (8)0.4853 (8)0.6722 (6)0.0178 (15)
H440.34970.53080.71390.021*
C450.4363 (8)0.4568 (8)0.9050 (6)0.0129 (13)
C460.4133 (8)0.4318 (7)1.0041 (6)0.0145 (15)
C470.4402 (6)0.5739 (5)1.0964 (4)0.0146 (10)
C480.3087 (6)0.6237 (5)1.0558 (4)0.0187 (10)
H48A0.21850.54951.03600.022*
H48B0.30130.70661.11530.022*
C490.3407 (6)0.6578 (5)0.9512 (4)0.0197 (10)
H49A0.35690.75790.96480.024*
H49B0.26220.60450.88440.024*
C500.4792 (6)0.6123 (5)0.9367 (4)0.0146 (10)
H500.53290.64750.88560.018*
C510.5615 (6)0.6616 (5)1.0609 (4)0.0139 (9)
C520.4574 (9)0.5748 (9)1.2163 (6)0.0194 (17)
H52A0.53690.53701.23300.029*
H52B0.36940.51801.22470.029*
H52C0.47710.67001.26870.029*
C530.5972 (8)0.8174 (8)1.1258 (6)0.0191 (15)
H53A0.64900.83861.20280.029*
H53B0.50870.84561.12810.029*
H53C0.65660.86781.08790.029*
C540.7017 (6)0.6204 (5)1.0730 (5)0.0189 (10)
H54A0.68320.52101.03210.028*
H54B0.74140.64151.15290.028*
H54C0.77000.67241.04170.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0129 (3)0.0073 (2)0.0088 (2)0.00148 (19)0.00161 (18)0.00126 (19)
Cl10.0181 (9)0.0182 (10)0.0176 (9)0.0081 (8)0.0042 (7)0.0075 (8)
O10.019 (3)0.011 (3)0.007 (2)0.005 (2)0.005 (2)0.002 (2)
O20.030 (3)0.006 (3)0.009 (2)0.002 (2)0.002 (2)0.000 (2)
C10.020 (3)0.014 (3)0.019 (3)0.010 (2)0.007 (2)0.008 (2)
C20.026 (3)0.017 (3)0.008 (2)0.008 (2)0.0018 (19)0.006 (2)
C30.026 (3)0.017 (3)0.008 (2)0.008 (2)0.0018 (19)0.006 (2)
C40.020 (3)0.014 (3)0.019 (3)0.010 (2)0.007 (2)0.008 (2)
C50.017 (3)0.010 (3)0.021 (3)0.000 (2)0.003 (3)0.005 (3)
C60.018 (3)0.012 (3)0.009 (3)0.007 (2)0.008 (2)0.002 (2)
C70.011 (4)0.019 (4)0.022 (4)0.005 (3)0.001 (3)0.008 (3)
C80.044 (5)0.015 (4)0.043 (5)0.013 (4)0.018 (4)0.007 (4)
C90.008 (3)0.020 (4)0.037 (4)0.004 (3)0.002 (3)0.008 (4)
C100.022 (4)0.018 (4)0.032 (5)0.002 (3)0.014 (3)0.009 (4)
C110.013 (3)0.013 (4)0.018 (3)0.006 (3)0.000 (3)0.007 (3)
C120.019 (3)0.011 (3)0.013 (3)0.001 (2)0.001 (2)0.005 (2)
C130.022 (4)0.014 (3)0.013 (3)0.006 (2)0.000 (2)0.001 (2)
C140.029 (4)0.020 (3)0.018 (3)0.001 (3)0.005 (3)0.009 (2)
C150.029 (4)0.020 (3)0.012 (3)0.006 (3)0.009 (2)0.008 (2)
C160.032 (4)0.019 (3)0.018 (3)0.005 (3)0.005 (3)0.002 (3)
C170.016 (3)0.014 (3)0.013 (3)0.001 (2)0.002 (2)0.004 (2)
C180.020 (3)0.006 (3)0.013 (3)0.002 (2)0.000 (2)0.002 (2)
C190.013 (3)0.017 (3)0.008 (3)0.004 (2)0.006 (2)0.002 (2)
C200.021 (3)0.011 (2)0.014 (2)0.004 (2)0.002 (2)0.0004 (18)
C210.021 (3)0.011 (2)0.018 (2)0.005 (2)0.002 (2)0.0015 (18)
C220.018 (3)0.014 (2)0.014 (2)0.005 (2)0.002 (2)0.0034 (18)
C230.020 (3)0.016 (2)0.018 (2)0.0001 (19)0.007 (2)0.003 (2)
C240.010 (2)0.015 (2)0.021 (2)0.0031 (18)0.0017 (19)0.001 (2)
C250.026 (5)0.019 (4)0.010 (3)0.000 (3)0.001 (3)0.008 (3)
C260.027 (4)0.010 (3)0.022 (3)0.005 (3)0.007 (3)0.004 (2)
C270.016 (3)0.021 (3)0.032 (3)0.009 (2)0.004 (2)0.001 (2)
Ru20.0126 (2)0.0070 (2)0.0082 (2)0.00274 (19)0.00164 (18)0.00139 (18)
Cl20.0167 (9)0.0215 (10)0.0159 (9)0.0108 (8)0.0041 (7)0.0048 (8)
O30.012 (3)0.009 (3)0.016 (3)0.001 (2)0.001 (2)0.004 (2)
O40.013 (2)0.011 (3)0.010 (2)0.002 (2)0.0063 (19)0.002 (2)
C280.012 (3)0.009 (3)0.015 (3)0.003 (2)0.006 (2)0.004 (2)
C290.011 (3)0.009 (3)0.018 (3)0.002 (2)0.002 (2)0.002 (2)
C300.015 (3)0.009 (3)0.017 (3)0.001 (2)0.007 (2)0.006 (2)
C310.012 (3)0.009 (3)0.015 (3)0.003 (2)0.006 (2)0.004 (2)
C320.017 (3)0.004 (2)0.014 (3)0.002 (2)0.000 (2)0.0004 (19)
C330.017 (3)0.004 (2)0.014 (3)0.002 (2)0.000 (2)0.0004 (19)
C340.017 (4)0.019 (4)0.017 (4)0.006 (3)0.014 (3)0.004 (3)
C350.026 (5)0.028 (5)0.029 (4)0.007 (4)0.004 (3)0.003 (4)
C360.019 (4)0.040 (5)0.044 (5)0.020 (4)0.017 (4)0.018 (4)
C370.038 (5)0.025 (5)0.024 (4)0.011 (4)0.016 (4)0.012 (4)
C380.010 (3)0.013 (4)0.009 (3)0.001 (3)0.004 (2)0.003 (3)
C390.008 (3)0.009 (3)0.010 (3)0.002 (2)0.001 (2)0.003 (2)
C400.017 (3)0.011 (3)0.018 (3)0.001 (3)0.003 (2)0.004 (3)
C410.012 (3)0.021 (4)0.019 (3)0.004 (2)0.005 (2)0.003 (3)
C420.050 (5)0.025 (4)0.015 (3)0.010 (3)0.000 (3)0.009 (3)
C430.035 (4)0.017 (3)0.013 (3)0.004 (3)0.006 (3)0.007 (2)
C440.018 (3)0.017 (3)0.018 (3)0.004 (2)0.003 (2)0.007 (2)
C450.017 (3)0.009 (3)0.012 (3)0.001 (2)0.002 (2)0.004 (2)
C460.016 (3)0.005 (3)0.017 (3)0.001 (2)0.005 (2)0.001 (2)
C470.023 (3)0.006 (2)0.012 (2)0.002 (2)0.004 (2)0.0003 (16)
C480.021 (3)0.015 (3)0.019 (2)0.008 (2)0.004 (2)0.0034 (19)
C490.024 (3)0.010 (2)0.022 (2)0.006 (2)0.004 (2)0.0028 (19)
C500.020 (3)0.007 (2)0.011 (2)0.001 (2)0.001 (2)0.0001 (16)
C510.015 (3)0.008 (2)0.015 (2)0.0006 (18)0.0023 (18)0.0020 (17)
C520.025 (4)0.016 (4)0.016 (4)0.002 (3)0.007 (3)0.005 (3)
C530.021 (3)0.014 (3)0.021 (3)0.002 (2)0.007 (2)0.006 (2)
C540.017 (3)0.018 (3)0.022 (3)0.002 (2)0.005 (2)0.008 (2)
Geometric parameters (Å, º) top
Ru1—O22.077 (5)Ru2—O32.073 (5)
Ru1—O12.084 (5)Ru2—O42.086 (5)
Ru1—C32.151 (7)Ru2—C302.141 (7)
Ru1—C22.160 (7)Ru2—C292.160 (7)
Ru1—C52.163 (8)Ru2—C322.168 (8)
Ru1—C62.170 (8)Ru2—C312.186 (8)
Ru1—C42.188 (9)Ru2—C282.190 (7)
Ru1—C12.200 (8)Ru2—C332.198 (8)
Ru1—Cl12.4069 (19)Ru2—Cl22.4108 (18)
O1—C111.293 (10)O3—C381.293 (9)
O2—C191.246 (9)O4—C461.259 (9)
C1—C61.438 (12)C28—C291.397 (10)
C1—C21.439 (10)C28—C331.442 (11)
C1—C71.483 (12)C28—C341.513 (10)
C2—C31.385 (12)C29—C301.461 (11)
C2—H20.9500C29—H290.9500
C3—C41.437 (12)C30—C311.384 (11)
C3—H30.9500C30—H300.9500
C4—C51.436 (11)C31—C321.428 (10)
C4—C101.482 (11)C31—C371.506 (11)
C5—C61.363 (11)C32—C331.424 (11)
C5—H50.9500C32—H320.9500
C6—H60.9500C33—H330.9500
C7—C91.541 (12)C34—C361.517 (11)
C7—C81.568 (11)C34—C351.516 (13)
C7—H71.0000C34—H341.0000
C8—H8A0.9800C35—H35A0.9800
C8—H8B0.9800C35—H35B0.9800
C8—H8C0.9800C35—H35C0.9800
C9—H9A0.9800C36—H36A0.9800
C9—H9B0.9800C36—H36B0.9800
C9—H9C0.9800C36—H36C0.9800
C10—H10A0.9800C37—H37A0.9800
C10—H10B0.9800C37—H37B0.9800
C10—H10C0.9800C37—H37C0.9800
C11—C181.384 (11)C38—C451.383 (10)
C11—C121.510 (11)C38—C391.482 (10)
C12—C171.379 (11)C39—C401.397 (10)
C12—C131.392 (10)C39—C441.409 (10)
C13—C141.376 (10)C40—C411.379 (11)
C13—H130.9500C40—H400.9500
C14—C151.386 (11)C41—C421.397 (11)
C14—H140.9500C41—H410.9500
C15—C161.381 (11)C42—C431.373 (12)
C15—H150.9500C42—H420.9500
C16—C171.405 (11)C43—C441.401 (10)
C16—H160.9500C43—H430.9500
C17—H170.9500C44—H440.9500
C18—C191.429 (10)C45—C461.409 (11)
C18—C221.544 (9)C45—C501.511 (9)
C19—C201.515 (9)C46—C471.536 (8)
C20—C251.512 (9)C47—C521.516 (9)
C20—C241.553 (7)C47—C511.553 (7)
C20—C211.554 (7)C47—C481.583 (7)
C21—C271.533 (8)C48—C491.543 (7)
C21—C261.536 (9)C48—H48A0.9900
C21—C221.559 (7)C48—H48B0.9900
C22—C231.530 (8)C49—C501.555 (7)
C22—H221.0000C49—H49A0.9900
C23—C241.551 (7)C49—H49B0.9900
C23—H23A0.9900C50—C511.553 (6)
C23—H23B0.9900C50—H501.0000
C24—H24A0.9900C51—C531.532 (9)
C24—H24B0.9900C51—C541.536 (7)
C25—H25A0.9800C52—H52A0.9800
C25—H25B0.9800C52—H52B0.9800
C25—H25C0.9800C52—H52C0.9800
C26—H26A0.9800C53—H53A0.9800
C26—H26B0.9800C53—H53B0.9800
C26—H26C0.9800C53—H53C0.9800
C27—H27A0.9800C54—H54A0.9800
C27—H27B0.9800C54—H54B0.9800
C27—H27C0.9800C54—H54C0.9800
O2—Ru1—O189.7 (2)O3—Ru2—O489.7 (2)
O2—Ru1—C387.5 (3)O3—Ru2—C30151.5 (2)
O1—Ru1—C3152.5 (3)O4—Ru2—C3089.0 (3)
O2—Ru1—C291.9 (3)O3—Ru2—C29112.2 (3)
O1—Ru1—C2115.4 (3)O4—Ru2—C2995.0 (3)
C3—Ru1—C237.5 (3)C30—Ru2—C2939.7 (3)
O2—Ru1—C5149.6 (3)O3—Ru2—C32121.0 (2)
O1—Ru1—C5120.1 (3)O4—Ru2—C32148.3 (2)
C3—Ru1—C568.9 (3)C30—Ru2—C3268.0 (3)
C2—Ru1—C580.9 (3)C29—Ru2—C3281.3 (3)
O2—Ru1—C6159.5 (2)O3—Ru2—C31159.2 (2)
O1—Ru1—C693.3 (2)O4—Ru2—C31110.9 (2)
C3—Ru1—C680.5 (3)C30—Ru2—C3137.3 (3)
C2—Ru1—C668.5 (3)C29—Ru2—C3169.8 (3)
C5—Ru1—C636.7 (3)C32—Ru2—C3138.3 (3)
O2—Ru1—C4111.4 (3)O3—Ru2—C2887.6 (2)
O1—Ru1—C4158.6 (2)O4—Ru2—C28124.1 (3)
C3—Ru1—C438.7 (3)C30—Ru2—C2869.8 (3)
C2—Ru1—C469.0 (3)C29—Ru2—C2837.5 (3)
C5—Ru1—C438.5 (3)C32—Ru2—C2869.4 (3)
C6—Ru1—C468.2 (3)C31—Ru2—C2882.8 (3)
O2—Ru1—C1121.5 (3)O3—Ru2—C3391.9 (3)
O1—Ru1—C189.5 (3)O4—Ru2—C33162.2 (2)
C3—Ru1—C169.0 (3)C30—Ru2—C3381.2 (3)
C2—Ru1—C138.5 (3)C29—Ru2—C3368.1 (3)
C5—Ru1—C168.6 (3)C32—Ru2—C3338.1 (3)
C6—Ru1—C138.4 (3)C31—Ru2—C3369.2 (3)
C4—Ru1—C182.6 (3)C28—Ru2—C3338.4 (3)
O2—Ru1—Cl185.99 (17)O3—Ru2—Cl286.42 (15)
O1—Ru1—Cl186.05 (15)O4—Ru2—Cl284.06 (16)
C3—Ru1—Cl1121.0 (2)C30—Ru2—Cl2121.7 (2)
C2—Ru1—Cl1158.5 (2)C29—Ru2—Cl2161.4 (2)
C5—Ru1—Cl190.1 (2)C32—Ru2—Cl289.8 (2)
C6—Ru1—Cl1114.4 (2)C31—Ru2—Cl293.18 (19)
C4—Ru1—Cl191.8 (2)C28—Ru2—Cl2151.1 (2)
C1—Ru1—Cl1152.2 (2)C33—Ru2—Cl2113.7 (2)
C11—O1—Ru1126.1 (5)C38—O3—Ru2126.7 (5)
C19—O2—Ru1124.1 (5)C46—O4—Ru2121.8 (5)
C6—C1—C2115.7 (7)C29—C28—C33118.5 (7)
C6—C1—C7121.4 (7)C29—C28—C34123.1 (7)
C2—C1—C7122.8 (8)C33—C28—C34118.4 (7)
C6—C1—Ru169.7 (4)C29—C28—Ru270.1 (4)
C2—C1—Ru169.2 (4)C33—C28—Ru271.1 (4)
C7—C1—Ru1127.8 (5)C34—C28—Ru2130.4 (5)
C3—C2—C1121.7 (8)C28—C29—C30120.3 (7)
C3—C2—Ru170.9 (4)C28—C29—Ru272.4 (4)
C1—C2—Ru172.2 (4)C30—C29—Ru269.4 (4)
C3—C2—H2119.1C28—C29—H29119.9
C1—C2—H2119.1C30—C29—H29119.9
Ru1—C2—H2130.4Ru2—C29—H29131.0
C2—C3—C4121.7 (7)C31—C30—C29121.7 (7)
C2—C3—Ru171.6 (4)C31—C30—Ru273.1 (4)
C4—C3—Ru172.0 (4)C29—C30—Ru270.8 (4)
C2—C3—H3119.2C31—C30—H30119.1
C4—C3—H3119.2C29—C30—H30119.1
Ru1—C3—H3129.8Ru2—C30—H30129.4
C3—C4—C5116.4 (7)C30—C31—C32117.9 (7)
C3—C4—C10121.8 (8)C30—C31—C37121.6 (7)
C5—C4—C10121.7 (8)C32—C31—C37120.4 (7)
C3—C4—Ru169.3 (5)C30—C31—Ru269.6 (5)
C5—C4—Ru169.8 (4)C32—C31—Ru270.2 (4)
C10—C4—Ru1128.6 (6)C37—C31—Ru2128.5 (5)
C6—C5—C4121.7 (8)C33—C32—C31121.7 (7)
C6—C5—Ru171.9 (5)C33—C32—Ru272.1 (4)
C4—C5—Ru171.7 (5)C31—C32—Ru271.5 (4)
C6—C5—H5119.2C33—C32—H32119.2
C4—C5—H5119.2C31—C32—H32119.2
Ru1—C5—H5129.8Ru2—C32—H32129.8
C5—C6—C1122.8 (7)C32—C33—C28119.9 (7)
C5—C6—Ru171.4 (5)C32—C33—Ru269.8 (4)
C1—C6—Ru171.9 (4)C28—C33—Ru270.5 (4)
C5—C6—H6118.6C32—C33—H33120.0
C1—C6—H6118.6C28—C33—H33120.0
Ru1—C6—H6131.1Ru2—C33—H33132.6
C1—C7—C9116.4 (7)C28—C34—C36108.0 (7)
C1—C7—C8109.0 (7)C28—C34—C35111.9 (7)
C9—C7—C8108.2 (7)C36—C34—C35113.4 (7)
C1—C7—H7107.7C28—C34—H34107.8
C9—C7—H7107.7C36—C34—H34107.8
C8—C7—H7107.7C35—C34—H34107.8
C7—C8—H8A109.5C34—C35—H35A109.5
C7—C8—H8B109.5C34—C35—H35B109.5
H8A—C8—H8B109.5H35A—C35—H35B109.5
C7—C8—H8C109.5C34—C35—H35C109.5
H8A—C8—H8C109.5H35A—C35—H35C109.5
H8B—C8—H8C109.5H35B—C35—H35C109.5
C7—C9—H9A109.5C34—C36—H36A109.5
C7—C9—H9B109.5C34—C36—H36B109.5
H9A—C9—H9B109.5H36A—C36—H36B109.5
C7—C9—H9C109.5C34—C36—H36C109.5
H9A—C9—H9C109.5H36A—C36—H36C109.5
H9B—C9—H9C109.5H36B—C36—H36C109.5
C4—C10—H10A109.5C31—C37—H37A109.5
C4—C10—H10B109.5C31—C37—H37B109.5
H10A—C10—H10B109.5H37A—C37—H37B109.5
C4—C10—H10C109.5C31—C37—H37C109.5
H10A—C10—H10C109.5H37A—C37—H37C109.5
H10B—C10—H10C109.5H37B—C37—H37C109.5
O1—C11—C18125.8 (7)O3—C38—C45125.3 (7)
O1—C11—C12113.7 (7)O3—C38—C39114.3 (7)
C18—C11—C12120.4 (7)C45—C38—C39120.5 (7)
C17—C12—C13119.8 (7)C40—C39—C44118.6 (7)
C17—C12—C11119.4 (7)C40—C39—C38120.4 (7)
C13—C12—C11120.7 (7)C44—C39—C38121.0 (7)
C14—C13—C12120.8 (7)C41—C40—C39121.1 (7)
C14—C13—H13119.6C41—C40—H40119.4
C12—C13—H13119.6C39—C40—H40119.4
C13—C14—C15119.3 (7)C40—C41—C42119.9 (8)
C13—C14—H14120.3C40—C41—H41120.1
C15—C14—H14120.3C42—C41—H41120.1
C16—C15—C14120.9 (7)C43—C42—C41120.0 (7)
C16—C15—H15119.5C43—C42—H42120.0
C14—C15—H15119.5C41—C42—H42120.0
C15—C16—C17119.3 (8)C42—C43—C44120.6 (7)
C15—C16—H16120.4C42—C43—H43119.7
C17—C16—H16120.4C44—C43—H43119.7
C12—C17—C16119.9 (7)C43—C44—C39119.7 (7)
C12—C17—H17120.1C43—C44—H44120.1
C16—C17—H17120.1C39—C44—H44120.1
C11—C18—C19124.6 (7)C38—C45—C46124.0 (7)
C11—C18—C22128.8 (7)C38—C45—C50129.8 (6)
C19—C18—C22105.0 (6)C46—C45—C50106.0 (6)
O2—C19—C18129.6 (7)O4—C46—C45131.7 (7)
O2—C19—C20122.9 (6)O4—C46—C47121.5 (6)
C18—C19—C20106.8 (6)C45—C46—C47106.7 (6)
C25—C20—C19113.9 (5)C52—C47—C46115.8 (5)
C25—C20—C24116.1 (5)C52—C47—C51120.5 (5)
C19—C20—C24103.3 (4)C46—C47—C51100.4 (4)
C25—C20—C21118.6 (5)C52—C47—C48114.6 (5)
C19—C20—C21100.8 (4)C46—C47—C48101.8 (4)
C24—C20—C21101.8 (4)C51—C47—C48100.9 (4)
C27—C21—C26108.7 (5)C49—C48—C47104.5 (4)
C27—C21—C20113.4 (5)C49—C48—H48A110.8
C26—C21—C20114.1 (5)C47—C48—H48A110.8
C27—C21—C22113.9 (4)C49—C48—H48B110.8
C26—C21—C22112.8 (5)C47—C48—H48B110.8
C20—C21—C2293.4 (4)H48A—C48—H48B108.9
C23—C22—C18105.5 (4)C48—C49—C50102.0 (4)
C23—C22—C21102.6 (4)C48—C49—H49A111.4
C18—C22—C21100.6 (4)C50—C49—H49A111.4
C23—C22—H22115.4C48—C49—H49B111.4
C18—C22—H22115.4C50—C49—H49B111.4
C21—C22—H22115.4H49A—C49—H49B109.2
C22—C23—C24102.5 (4)C45—C50—C51102.2 (4)
C22—C23—H23A111.3C45—C50—C49105.8 (5)
C24—C23—H23A111.3C51—C50—C49101.7 (4)
C22—C23—H23B111.3C45—C50—H50115.2
C24—C23—H23B111.3C51—C50—H50115.2
H23A—C23—H23B109.2C49—C50—H50115.2
C23—C24—C20104.3 (4)C53—C51—C54107.1 (5)
C23—C24—H24A110.9C53—C51—C47113.7 (5)
C20—C24—H24A110.9C54—C51—C47113.7 (4)
C23—C24—H24B110.9C53—C51—C50115.3 (4)
C20—C24—H24B110.9C54—C51—C50113.2 (4)
H24A—C24—H24B108.9C47—C51—C5093.8 (4)
C20—C25—H25A109.5C47—C52—H52A109.5
C20—C25—H25B109.5C47—C52—H52B109.5
H25A—C25—H25B109.5H52A—C52—H52B109.5
C20—C25—H25C109.5C47—C52—H52C109.5
H25A—C25—H25C109.5H52A—C52—H52C109.5
H25B—C25—H25C109.5H52B—C52—H52C109.5
C21—C26—H26A109.5C51—C53—H53A109.5
C21—C26—H26B109.5C51—C53—H53B109.5
H26A—C26—H26B109.5H53A—C53—H53B109.5
C21—C26—H26C109.5C51—C53—H53C109.5
H26A—C26—H26C109.5H53A—C53—H53C109.5
H26B—C26—H26C109.5H53B—C53—H53C109.5
C21—C27—H27A109.5C51—C54—H54A109.5
C21—C27—H27B109.5C51—C54—H54B109.5
H27A—C27—H27B109.5H54A—C54—H54B109.5
C21—C27—H27C109.5C51—C54—H54C109.5
H27A—C27—H27C109.5H54A—C54—H54C109.5
H27B—C27—H27C109.5H54B—C54—H54C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C43—H43···Cl10.952.693.605 (7)162
C14—H14···Cl20.952.783.731 (7)178

Experimental details

Crystal data
Chemical formula[RuCl(C10H14)(C17H19O2)]
Mr526.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.833 (2), 10.572 (2), 12.785 (3)
α, β, γ (°)108.13 (3), 97.62 (3), 102.54 (3)
V3)1203.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.56 × 0.31 × 0.24
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.762, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10110, 7861, 7619
Rint0.020
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.06
No. of reflections7861
No. of parameters547
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 1.34
Absolute structureFlack (1983), 2564 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C43—H43···Cl10.952.693.605 (7)161.9
C14—H14···Cl20.952.783.731 (7)178.1
 

Acknowledgements

The authors thank the SCCYT (Universidad de Cádiz) for the X-ray data collection and the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía for financial support.

References

First citationAit Ali, M., Karim, A., Castanet, Y., Mortreux, A. & Mentré, O. (2006). Acta Cryst. E62, m3160–m3162.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. Engl. 38, 1512–1531.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpannenberg, A., Fdil, N., El Firdoussi, L. & Karim, A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 549–550.  CAS Google Scholar
First citationTogni, A. (1990). Organometallics 9, 3106–3213.  CrossRef CAS Web of Science Google Scholar
First citationTogni, A., Rist, G. & Schweiger, A. (1993). J. Am. Chem. Soc. 115, 1908–1915.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds