organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3β-Chloro­cholest-5-en-7-one

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 February 2010; accepted 18 February 2010; online 27 February 2010)

The title compound, C27H43ClO, is a steroid derivative composed of a saturated carbon fused-ring framework with an alkyl side chain. The A and C rings have chair conformations and the B and D rings assume half-chair conformations. The cholesterol side chain is fully extended with a gauche, trans conformation of the terminal methyl groups. In the crystal structure, the molecules are aligned in an antiparallel fashion, forming alternate layers. These layers are then linked via C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related structures, see: Kang et al. (1985[Kang, B. K., Chung, M. J. & Park, Y. J. (1985). Bull. Korean Chem. Soc. 6, 333-337.]); Yun et al. (1989[Yun, M. K., Park, Y. J., Shin, W. & Craven, B. M. (1989). Bull. Korean Chem. Soc. 10, 335-339.]); Ahn & Park (1990[Ahn, C. T. & Park, Y. J. (1990). J. Korean Chem. Soc. 34, 1-9.]); Park & Shin (2002[Park, Y.J. & Shin, J. M. (2002). Korean J. Crystallogr. 13, 21-24.]); Park (2004[Park, Y. J. (2004). Bull. Korean Chem. Soc. 25, 751-753.]); Park et al. (2005[Park, Y. J., Bae, J. & Lah, M. S. (2005). Acta Cryst. E61, o2312-o2314.]). For the role of cholesterol derivatives in biological systems, see: Abrahamsson et al. (1977[Abrahamsson, S., Dahlen, B., Lofgren, H., Pascher, I. & Sundell, S. (1977). Structure of Biological Membranes. New York, London: Plenum Press. pp. 1-8.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H43ClO

  • Mr = 419.06

  • Monoclinic, P 21

  • a = 11.1494 (11) Å

  • b = 7.8552 (8) Å

  • c = 14.6317 (14) Å

  • β = 109.535 (2)°

  • V = 1207.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.77 × 0.15 × 0.15 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.878, Tmax = 0.975

  • 13366 measured reflections

  • 6524 independent reflections

  • 5728 reflections with I > 2s(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.06

  • 6524 reflections

  • 267 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2745 Friedel pairs

  • Flack parameter: 0.00 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.97 2.45 3.377 (2) 159
C14—H14B⋯O1ii 0.97 2.49 3.268 (2) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Although the basic biological functions of cholesterol have been known for many years, little is known about its molecular interactions with enzymes, cholesterol-binding proteins and related effectors of gene transcription. A series of crystal structures of the esters and carbonates of cholesterol (Ahn & Park, 1990; Kang et al., 1985; Yun et al., 1989; Park & Shin, 2002; Park, 2004) has been examined in order to obtain structural information relevant to the liquid crystalline phases and the possible modes of association of the cholesterol derivatives themselves, as well as of other substances in biological systems (Abrahamsson et al., 1977). In view of the biological importance of cholesterols, we report here the crystal structure of the title compound (I) - a new cholesterol derivative.

In the asymmetric unit of the title compound (Fig. 1), the A (C7–C12) [Q = 0.5302 (18)Å, Θ = 168.67 (19)° and ϕ = 324.7 (10)°] and C (C13–C16/C3/C4) [0.5636 (17)Å, Θ = 172.25 (16)° and ϕ = 119.9 (13)°] rings have chair conformations (Cremer & Pople, 1975), and the B (C4–C7/C12–C13) [Q = 0.4830 (16)Å , Θ = 51 (19)° and ϕ =313.6 (2)°] and D (C1–C3/C16/C17) [Q = 0.4653 (17)Å and ϕ = 273.6 (2)°] rings assume half-chair conformations. The torsion angles C20-C21-C22-C23 of 61.84 (18)° and C20-C21-C22-C24 of -175.12 (13)° show that the terminal isopropyl group has a (-)-gauche conformation. This type of conformation was also observed in the crystal structure of cholesteryl isobutylcarbonate (Park et al., 2005). There are eight chiral centres in the molecule. The absolute configurations of these sites were determined by the refinement of the Flack parameter. From the structure presented, these sites exhibit the following chiralities: C3 = S, C4 = S, C9 = S, C12 = R, C13 = S, C16 = R, C17 = R and C18 = R.

In the crystal structure, the molecules are aligned in an antiparallel fashion to form alternate layers. These layers are then linked via C—H···O (Table 1) hydrogen bonds to form a three dimensional network

Related literature top

For related structures, see: Kang et al. (1985); Yun et al. (1989); Ahn & Park (1990); Park & Shin (2002); Park (2004); Park et al. (2005). For the role of cholesterol derivatives in biological systems, see: Abrahamsson et al. (1977). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A solution of butyl chromate [t-butyl alcohol (60 mL), CrO3 (20 g), acetic acid (35 mL) and acetic anhydride (10 mL)] was added at 0°C to a solution of 3β-chlorocholest -5-ene (8 g) in CCl4 (150 mL), acetic acid (30 mL) and acetic anhydride (10 mL). The content was refluxed for 3 h and then diluted with water. The organic layer was washed with sodium bicarbonate solution (5%) and water and then dried over anhydrous sodium sulphate. Evaporation of the solvents under reduced pressure furnished 3β-chlorocholest-5-en-7-one which was crystallized from methanol (3.4 g), m. p. 144°C (reported, m. p.144 -145°C ).

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98Å] and were refined using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C). 2745 Friedel pairs were used to determine the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
3β-chlorocholest-5-en-7-one top
Crystal data top
C27H43ClOF(000) = 460
Mr = 419.06Dx = 1.152 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5352 reflections
a = 11.1494 (11) Åθ = 2.8–30.1°
b = 7.8552 (8) ŵ = 0.17 mm1
c = 14.6317 (14) ÅT = 100 K
β = 109.535 (2)°Needle, pink
V = 1207.7 (2) Å30.77 × 0.15 × 0.15 mm
Z = 2
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6524 independent reflections
Radiation source: fine-focus sealed tube5728 reflections with I > 2s(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.878, Tmax = 0.975k = 1111
13366 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.1133P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6524 reflectionsΔρmax = 0.35 e Å3
267 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983); 2745 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (5)
Crystal data top
C27H43ClOV = 1207.7 (2) Å3
Mr = 419.06Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.1494 (11) ŵ = 0.17 mm1
b = 7.8552 (8) ÅT = 100 K
c = 14.6317 (14) Å0.77 × 0.15 × 0.15 mm
β = 109.535 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5728 reflections with I > 2s(I)
Tmin = 0.878, Tmax = 0.975Rint = 0.027
13366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.23 e Å3
6524 reflectionsAbsolute structure: Flack (1983); 2745 Friedel pairs
267 parametersAbsolute structure parameter: 0.00 (5)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93405 (4)1.01064 (7)0.14116 (3)0.03660 (12)
O10.54188 (11)1.39479 (15)0.12534 (8)0.0239 (2)
C10.36679 (16)1.1549 (2)0.32152 (12)0.0243 (3)
H1A0.28231.20070.28940.029*
H1B0.39001.17620.39060.029*
C20.46410 (15)1.2397 (2)0.28114 (11)0.0220 (3)
H2A0.42701.33720.24090.026*
H2B0.53941.27620.33330.026*
C30.49592 (14)1.09800 (19)0.22116 (10)0.0163 (3)
H3A0.42281.08860.16120.020*
C40.61428 (14)1.11592 (19)0.19055 (10)0.0153 (3)
H4A0.68891.12670.24930.018*
C50.60913 (14)1.2714 (2)0.12715 (10)0.0175 (3)
C60.69051 (14)1.2685 (2)0.06594 (10)0.0206 (3)
H6A0.69651.36720.03260.025*
C70.75656 (14)1.1313 (2)0.05551 (10)0.0185 (3)
C80.84283 (15)1.1441 (2)0.00546 (12)0.0250 (3)
H8A0.93091.14690.03680.030*
H8B0.82511.24930.04230.030*
C90.82322 (14)0.9942 (3)0.07473 (10)0.0259 (3)
H9A0.73610.99770.12080.031*
C100.84297 (16)0.8279 (2)0.01997 (12)0.0260 (4)
H10A0.92950.82210.02490.031*
H10B0.83020.73380.06510.031*
C110.74939 (15)0.8130 (2)0.03604 (12)0.0237 (3)
H11A0.76690.70820.07320.028*
H11B0.66380.80480.01020.028*
C120.75418 (12)0.9628 (2)0.10585 (9)0.0172 (3)
C130.63162 (13)0.9550 (2)0.13481 (10)0.0162 (3)
H13A0.55980.95450.07380.019*
C140.62106 (15)0.7897 (2)0.18685 (12)0.0222 (3)
H14A0.69610.77780.24400.027*
H14B0.61960.69440.14430.027*
C150.50242 (14)0.7810 (2)0.21758 (11)0.0193 (3)
H15A0.42680.77870.16030.023*
H15B0.50440.67700.25380.023*
C160.49628 (13)0.9347 (2)0.28049 (9)0.0163 (3)
C170.36904 (13)0.9597 (2)0.30170 (10)0.0177 (3)
H17A0.29920.93590.24140.021*
C180.34553 (14)0.8525 (2)0.38237 (10)0.0183 (3)
H18A0.40980.88470.44410.022*
C190.21287 (14)0.8933 (2)0.38945 (10)0.0210 (3)
H19A0.19251.01160.37200.025*
H19B0.14940.82350.34310.025*
C200.20630 (14)0.8619 (2)0.49086 (10)0.0199 (3)
H20A0.23280.74600.51010.024*
H20B0.26570.93770.53640.024*
C210.07337 (13)0.8897 (2)0.49688 (10)0.0185 (3)
H21A0.01370.81800.44890.022*
H21B0.04881.00710.48000.022*
C220.06123 (14)0.8520 (2)0.59630 (10)0.0181 (3)
H22A0.08790.73400.61340.022*
C230.14585 (14)0.9672 (2)0.67541 (10)0.0251 (3)
H23A0.13290.94260.73570.038*
H23B0.12471.08400.65820.038*
H23C0.23340.94760.68220.038*
C240.07746 (15)0.8691 (2)0.59158 (11)0.0256 (3)
H24A0.08410.84160.65360.038*
H24B0.12960.79270.54340.038*
H24C0.10570.98400.57470.038*
C250.87768 (13)0.9510 (2)0.19492 (10)0.0251 (3)
H25A0.95030.96310.17410.038*
H25B0.88100.84260.22590.038*
H25C0.87821.04020.23990.038*
C260.60855 (13)0.9319 (2)0.37695 (10)0.0218 (3)
H26A0.68670.95080.36440.033*
H26B0.61170.82320.40770.033*
H26C0.59711.01990.41880.033*
C270.35678 (15)0.6596 (2)0.36912 (11)0.0228 (3)
H27A0.44430.63030.38120.034*
H27B0.30730.62830.30400.034*
H27C0.32570.59970.41390.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0374 (2)0.0516 (3)0.02863 (18)0.0003 (2)0.02143 (16)0.0012 (2)
O10.0309 (6)0.0136 (5)0.0292 (5)0.0011 (5)0.0125 (5)0.0011 (4)
C10.0291 (8)0.0188 (8)0.0309 (8)0.0032 (7)0.0179 (6)0.0008 (6)
C20.0282 (8)0.0149 (8)0.0264 (7)0.0016 (6)0.0137 (6)0.0009 (6)
C30.0173 (7)0.0147 (7)0.0171 (6)0.0016 (6)0.0059 (5)0.0013 (5)
C40.0154 (6)0.0123 (7)0.0175 (6)0.0012 (5)0.0047 (5)0.0011 (5)
C50.0199 (6)0.0134 (7)0.0180 (6)0.0039 (6)0.0045 (5)0.0013 (5)
C60.0240 (7)0.0178 (7)0.0208 (6)0.0034 (6)0.0086 (5)0.0021 (6)
C70.0179 (7)0.0202 (8)0.0175 (6)0.0039 (6)0.0059 (5)0.0011 (6)
C80.0240 (8)0.0290 (10)0.0251 (7)0.0031 (7)0.0125 (6)0.0017 (7)
C90.0214 (7)0.0359 (10)0.0230 (6)0.0014 (7)0.0110 (5)0.0029 (7)
C100.0231 (8)0.0296 (9)0.0299 (8)0.0002 (7)0.0150 (6)0.0062 (7)
C110.0230 (7)0.0205 (8)0.0317 (8)0.0021 (6)0.0147 (6)0.0056 (6)
C120.0165 (6)0.0169 (7)0.0197 (6)0.0001 (6)0.0080 (5)0.0005 (6)
C130.0168 (6)0.0123 (7)0.0210 (6)0.0008 (5)0.0084 (5)0.0014 (5)
C140.0274 (8)0.0118 (7)0.0341 (8)0.0014 (6)0.0192 (7)0.0006 (6)
C150.0234 (7)0.0121 (7)0.0262 (7)0.0042 (6)0.0133 (6)0.0019 (6)
C160.0158 (6)0.0153 (7)0.0178 (6)0.0000 (6)0.0058 (5)0.0009 (5)
C170.0174 (6)0.0174 (7)0.0192 (6)0.0017 (6)0.0072 (5)0.0016 (5)
C180.0180 (6)0.0209 (8)0.0176 (6)0.0011 (6)0.0079 (5)0.0024 (5)
C190.0199 (7)0.0250 (8)0.0201 (6)0.0023 (6)0.0093 (5)0.0028 (6)
C200.0183 (7)0.0232 (8)0.0195 (6)0.0011 (6)0.0079 (5)0.0017 (6)
C210.0179 (6)0.0191 (7)0.0188 (6)0.0007 (6)0.0067 (5)0.0018 (6)
C220.0221 (7)0.0155 (7)0.0182 (6)0.0008 (6)0.0087 (5)0.0004 (5)
C230.0273 (7)0.0244 (9)0.0222 (6)0.0014 (7)0.0063 (5)0.0032 (6)
C240.0233 (7)0.0289 (9)0.0285 (7)0.0000 (7)0.0138 (6)0.0015 (7)
C250.0182 (6)0.0325 (9)0.0239 (6)0.0013 (7)0.0064 (5)0.0038 (7)
C260.0200 (6)0.0222 (8)0.0212 (6)0.0005 (6)0.0045 (5)0.0038 (6)
C270.0270 (7)0.0189 (8)0.0262 (7)0.0003 (7)0.0136 (6)0.0028 (6)
Geometric parameters (Å, º) top
Cl1—C91.8143 (14)C15—C161.533 (2)
O1—C51.2203 (19)C15—H15A0.9700
C1—C21.549 (2)C15—H15B0.9700
C1—C171.562 (2)C16—C261.5420 (19)
C1—H1A0.9700C16—C171.5627 (18)
C1—H1B0.9700C17—C181.5423 (19)
C2—C31.531 (2)C17—H17A0.9800
C2—H2A0.9700C18—C271.538 (2)
C2—H2B0.9700C18—C191.550 (2)
C3—C41.5354 (19)C18—H18A0.9800
C3—C161.548 (2)C19—C201.5299 (19)
C3—H3A0.9800C19—H19A0.9700
C4—C51.523 (2)C19—H19B0.9700
C4—C131.551 (2)C20—C211.5295 (19)
C4—H4A0.9800C20—H20A0.9700
C5—C61.4728 (19)C20—H20B0.9700
C6—C71.342 (2)C21—C221.5342 (18)
C6—H6A0.9300C21—H21A0.9700
C7—C81.518 (2)C21—H21B0.9700
C7—C121.519 (2)C22—C231.523 (2)
C8—C91.521 (2)C22—C241.530 (2)
C8—H8A0.9700C22—H22A0.9800
C8—H8B0.9700C23—H23A0.9600
C9—C101.510 (3)C23—H23B0.9600
C9—H9A0.9800C23—H23C0.9600
C10—C111.532 (2)C24—H24A0.9600
C10—H10A0.9700C24—H24B0.9600
C10—H10B0.9700C24—H24C0.9600
C11—C121.548 (2)C25—H25A0.9600
C11—H11A0.9700C25—H25B0.9600
C11—H11B0.9700C25—H25C0.9600
C12—C251.5501 (19)C26—H26A0.9600
C12—C131.5614 (17)C26—H26B0.9600
C13—C141.530 (2)C26—H26C0.9600
C13—H13A0.9800C27—H27A0.9600
C14—C151.5344 (19)C27—H27B0.9600
C14—H14A0.9700C27—H27C0.9600
C14—H14B0.9700
C2—C1—C17107.13 (12)C14—C15—H15A109.5
C2—C1—H1A110.3C16—C15—H15B109.5
C17—C1—H1A110.3C14—C15—H15B109.5
C2—C1—H1B110.3H15A—C15—H15B108.0
C17—C1—H1B110.3C15—C16—C26110.65 (13)
H1A—C1—H1B108.5C15—C16—C3107.93 (10)
C3—C2—C1103.42 (13)C26—C16—C3111.98 (12)
C3—C2—H2A111.1C15—C16—C17116.36 (12)
C1—C2—H2A111.1C26—C16—C17109.45 (11)
C3—C2—H2B111.1C3—C16—C17100.07 (11)
C1—C2—H2B111.1C18—C17—C1112.14 (12)
H2A—C2—H2B109.0C18—C17—C16118.76 (12)
C2—C3—C4119.15 (12)C1—C17—C16103.43 (11)
C2—C3—C16103.82 (11)C18—C17—H17A107.3
C4—C3—C16113.47 (11)C1—C17—H17A107.3
C2—C3—H3A106.5C16—C17—H17A107.3
C4—C3—H3A106.5C27—C18—C17113.57 (12)
C16—C3—H3A106.5C27—C18—C19109.40 (13)
C5—C4—C3112.97 (12)C17—C18—C19110.37 (12)
C5—C4—C13108.62 (11)C27—C18—H18A107.8
C3—C4—C13110.43 (11)C17—C18—H18A107.8
C5—C4—H4A108.2C19—C18—H18A107.8
C3—C4—H4A108.2C20—C19—C18112.80 (12)
C13—C4—H4A108.2C20—C19—H19A109.0
O1—C5—C6119.88 (14)C18—C19—H19A109.0
O1—C5—C4123.22 (13)C20—C19—H19B109.0
C6—C5—C4116.90 (13)C18—C19—H19B109.0
C7—C6—C5123.69 (15)H19A—C19—H19B107.8
C7—C6—H6A118.2C21—C20—C19113.23 (12)
C5—C6—H6A118.2C21—C20—H20A108.9
C6—C7—C8119.56 (14)C19—C20—H20A108.9
C6—C7—C12123.02 (13)C21—C20—H20B108.9
C8—C7—C12117.36 (13)C19—C20—H20B108.9
C7—C8—C9111.24 (13)H20A—C20—H20B107.7
C7—C8—H8A109.4C20—C21—C22114.93 (12)
C9—C8—H8A109.4C20—C21—H21A108.5
C7—C8—H8B109.4C22—C21—H21A108.5
C9—C8—H8B109.4C20—C21—H21B108.5
H8A—C8—H8B108.0C22—C21—H21B108.5
C10—C9—C8110.69 (12)H21A—C21—H21B107.5
C10—C9—Cl1109.97 (11)C23—C22—C24109.99 (12)
C8—C9—Cl1109.26 (11)C23—C22—C21112.17 (12)
C10—C9—H9A109.0C24—C22—C21110.39 (12)
C8—C9—H9A109.0C23—C22—H22A108.1
Cl1—C9—H9A109.0C24—C22—H22A108.1
C9—C10—C11110.22 (13)C21—C22—H22A108.1
C9—C10—H10A109.6C22—C23—H23A109.5
C11—C10—H10A109.6C22—C23—H23B109.5
C9—C10—H10B109.6H23A—C23—H23B109.5
C11—C10—H10B109.6C22—C23—H23C109.5
H10A—C10—H10B108.1H23A—C23—H23C109.5
C10—C11—C12114.56 (13)H23B—C23—H23C109.5
C10—C11—H11A108.6C22—C24—H24A109.5
C12—C11—H11A108.6C22—C24—H24B109.5
C10—C11—H11B108.6H24A—C24—H24B109.5
C12—C11—H11B108.6C22—C24—H24C109.5
H11A—C11—H11B107.6H24A—C24—H24C109.5
C7—C12—C11110.19 (11)H24B—C24—H24C109.5
C7—C12—C25107.75 (12)C12—C25—H25A109.5
C11—C12—C25109.54 (13)C12—C25—H25B109.5
C7—C12—C13108.94 (12)H25A—C25—H25B109.5
C11—C12—C13107.99 (12)C12—C25—H25C109.5
C25—C12—C13112.42 (11)H25A—C25—H25C109.5
C14—C13—C4112.72 (11)H25B—C25—H25C109.5
C14—C13—C12112.87 (12)C16—C26—H26A109.5
C4—C13—C12112.63 (12)C16—C26—H26B109.5
C14—C13—H13A106.0H26A—C26—H26B109.5
C4—C13—H13A106.0C16—C26—H26C109.5
C12—C13—H13A106.0H26A—C26—H26C109.5
C13—C14—C15113.63 (13)H26B—C26—H26C109.5
C13—C14—H14A108.8C18—C27—H27A109.5
C15—C14—H14A108.8C18—C27—H27B109.5
C13—C14—H14B108.8H27A—C27—H27B109.5
C15—C14—H14B108.8C18—C27—H27C109.5
H14A—C14—H14B107.7H27A—C27—H27C109.5
C16—C15—C14110.91 (12)H27B—C27—H27C109.5
C16—C15—H15A109.5
C17—C1—C2—C311.85 (16)C11—C12—C13—C1460.73 (15)
C1—C2—C3—C4164.30 (12)C25—C12—C13—C1460.24 (17)
C1—C2—C3—C1636.94 (15)C7—C12—C13—C450.55 (14)
C2—C3—C4—C560.75 (17)C11—C12—C13—C4170.22 (12)
C16—C3—C4—C5176.54 (11)C25—C12—C13—C468.81 (17)
C2—C3—C4—C13177.39 (12)C4—C13—C14—C1549.92 (16)
C16—C3—C4—C1354.68 (15)C12—C13—C14—C15178.93 (12)
C3—C4—C5—O121.5 (2)C13—C14—C15—C1655.38 (17)
C13—C4—C5—O1144.42 (14)C14—C15—C16—C2664.78 (16)
C3—C4—C5—C6158.47 (12)C14—C15—C16—C358.06 (15)
C13—C4—C5—C635.59 (16)C14—C15—C16—C17169.50 (12)
O1—C5—C6—C7172.50 (15)C2—C3—C16—C15169.53 (12)
C4—C5—C6—C77.5 (2)C4—C3—C16—C1559.66 (15)
C5—C6—C7—C8177.02 (13)C2—C3—C16—C2668.45 (14)
C5—C6—C7—C120.2 (2)C4—C3—C16—C2662.37 (15)
C6—C7—C8—C9133.34 (16)C2—C3—C16—C1747.42 (13)
C12—C7—C8—C949.29 (18)C4—C3—C16—C17178.24 (11)
C7—C8—C9—C1055.93 (17)C2—C1—C17—C18146.24 (12)
C7—C8—C9—Cl1177.18 (11)C2—C1—C17—C1617.11 (15)
C8—C9—C10—C1159.34 (16)C15—C16—C17—C1880.39 (16)
Cl1—C9—C10—C11179.83 (11)C26—C16—C17—C1845.94 (18)
C9—C10—C11—C1255.40 (18)C3—C16—C17—C18163.70 (13)
C6—C7—C12—C11139.49 (15)C15—C16—C17—C1154.66 (13)
C8—C7—C12—C1143.24 (17)C26—C16—C17—C179.02 (14)
C6—C7—C12—C25101.04 (16)C3—C16—C17—C138.74 (13)
C8—C7—C12—C2576.23 (15)C1—C17—C18—C27175.77 (13)
C6—C7—C12—C1321.18 (19)C16—C17—C18—C2755.15 (18)
C8—C7—C12—C13161.54 (12)C1—C17—C18—C1960.95 (16)
C10—C11—C12—C745.83 (17)C16—C17—C18—C19178.43 (13)
C10—C11—C12—C2572.54 (17)C27—C18—C19—C2081.20 (16)
C10—C11—C12—C13164.71 (13)C17—C18—C19—C20153.13 (14)
C5—C4—C13—C14172.73 (12)C18—C19—C20—C21175.93 (14)
C3—C4—C13—C1448.33 (15)C19—C20—C21—C22177.44 (14)
C5—C4—C13—C1258.15 (15)C20—C21—C22—C2361.84 (18)
C3—C4—C13—C12177.45 (11)C20—C21—C22—C24175.12 (13)
C7—C12—C13—C14179.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.453.377 (2)159
C14—H14B···O1ii0.972.493.268 (2)137
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H43ClO
Mr419.06
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.1494 (11), 7.8552 (8), 14.6317 (14)
β (°) 109.535 (2)
V3)1207.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.77 × 0.15 × 0.15
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.878, 0.975
No. of measured, independent and
observed [I > 2s(I)] reflections
13366, 6524, 5728
Rint0.027
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.06
No. of reflections6524
No. of parameters267
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23
Absolute structureFlack (1983); 2745 Friedel pairs
Absolute structure parameter0.00 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.97002.45003.377 (2)159.00
C14—H14B···O1ii0.97002.49003.268 (2)137.00
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MSK, OS and RH thank the Department of Chemistry, Aligarth Muslim University, India, for providing necessary research facilities. MSK acknowledges Universiti Sains Malaysia for providing assistance for this work under the post-doctoral scheme. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAbrahamsson, S., Dahlen, B., Lofgren, H., Pascher, I. & Sundell, S. (1977). Structure of Biological Membranes. New York, London: Plenum Press. pp. 1–8.  Google Scholar
First citationAhn, C. T. & Park, Y. J. (1990). J. Korean Chem. Soc. 34, 1–9.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKang, B. K., Chung, M. J. & Park, Y. J. (1985). Bull. Korean Chem. Soc. 6, 333–337.  CAS Google Scholar
First citationPark, Y. J. (2004). Bull. Korean Chem. Soc. 25, 751–753.  CAS Google Scholar
First citationPark, Y. J., Bae, J. & Lah, M. S. (2005). Acta Cryst. E61, o2312–o2314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, Y.J. & Shin, J. M. (2002). Korean J. Crystallogr. 13, 21–24.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYun, M. K., Park, Y. J., Shin, W. & Craven, B. M. (1989). Bull. Korean Chem. Soc. 10, 335–339.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds