organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-(Benzo[d]thia­zol-2-yl)thio­phen-2-yl]benzo[d]thia­zole

aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany
*Correspondence e-mail: thomas.gerber@nmmu.ac.za

(Received 22 January 2010; accepted 1 February 2010; online 6 February 2010)

The structure of the title compound, C18H10N2S3, consists of a central thio­phene ring and two terminal thia­zole rings. The two S atoms of the thia­zole rings are trans to the thio­phene S atom sulfur. The thia­zole rings are approximately coplanar with the thio­phene ring, with dihedral angles of 6.23 (11) and 4.81 (11)° between them. In the crystal, zigzag chains are formed along [010] by weak C—H⋯N inter­actions.

Related literature

For the synthesis of thio­phene derivatives, see: Kaleta et al. (2006[Kaleta, Z., Makowski, B. T., Soos, T. & Dembinski, R. (2006). Org. Lett. 8, 1625-1628.]); Minetto et al. (2005[Minetto, G., Raveglia, L. F., Sega, A. & Taddei, M. (2005). Eur. J. Org. Chem. pp. 5277-5288.]); Bayh et al. (2005[Bayh, O., Awad, H., Mongin, F., Hoarau, C., Trecourt, F., Quequiner, G., Marsais, F., Blanco, F., Abarca, B. & Ballesteros, R. (2005). Tetrahedron, 61, 4779-4784.]). For their conformation, see: Alberti et al. (1986[Alberti, A., Chatgilialoglu, C. & Guerra, M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1179-1182.]); Hagen (1986[Hagen, K. (1986). J. Mol. Struct. 145, 359-366.]); Salman (1982[Salman, S. R. (1982). Org. Magn. Res. 20, 151-153.]) and for their applications, see: Seed et al. (2003[Seed, A. J., Cross, G. J., Toyne, K. J. & Goodby, J. W. (2003). Liq. Cryst. 30, 1089-1107.]); Cheylan et al. (2006[Cheylan, S., Fraleoni-Morgera, A., Puigdollers, J., Voz, C., Setti, L., Alcubilla, R., Badenes, G., Costa-Bizzari, P. & Lanzi, M. (2006). Thin Solid Films, 497, 16-19.]); Karimian (2009[Karimian, K. (2009). Expert Opin. Ther. Pat. 19, 369-371.]); Kiryanov et al. (2001[Kiryanov, A. A., Seed, A. J. & Sampson, P. (2001). Tetrahedron Lett. 42, 8797-8800.]); Shi et al. (1996[Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375-3384.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10N2S3

  • Mr = 350.48

  • Monoclinic, P 21 /c

  • a = 15.7297 (14) Å

  • b = 8.2396 (5) Å

  • c = 12.8160 (12) Å

  • β = 112.872 (11)°

  • V = 1530.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 200 K

  • 0.34 × 0.15 × 0.01 mm

Data collection
  • Oxford XCalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abington, England.]) Tmin = 0.839, Tmax = 1.000

  • 5789 measured reflections

  • 3086 independent reflections

  • 1452 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.051

  • S = 0.72

  • 3086 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯N1i 0.95 2.63 3.444 (4) 144
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abington, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Derivatives of thiophene have shown promise in photovoltaic (Cheylan et al., 2006), liquid crystal (Kiryanov et al. 2001) and therapeutic applications (Seed et al., 2003). On the other hand, thiazole derivatives have been evaluated for biological activity (Karimian, 2009), especially against certain breast carcinoma cell lines (Shi et al. 1996).

In the present work the structure of 2-(5-benzo[d]thiazol-2-yl)thiophen-2-yl)benzo[d]thiazole has been determined to explore its suitability as a tridentate ligand for various metal ions.

The structure consists of a central thiophenyl ring and two terminal thiazolyl rings, with the two sulfur atoms of the latter rings in trans positions to the thiophenyl sulfur atom (see Fig. 1). The thiazolyl rings with S1 and S3 are approximately coplanar with the thiophenyl ring, with dihedral angles of 6.23 (11)° and 4.81 (11)° respectively. The dihedral angle between the two thiazolyl rings is 10.39 (8)°.

The bonding parameters illustrate that C8—C9 and C10—C11 bonds in the thiophenyl ring are localized double bonds (1.354 (5) and 1.358 (4) Å respectively), as are the N1—C7 and N2—C12 bonds (1.286 (4) and 1.308 (4) Å respectively).

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van der Waals radii, the molecules are linked by weak interactions of the type C16—H16···N1, which lead to the formation of zig-zag-chains along [010] (see Fig. 2). The shortest distance in the parallel stacking of the molecules is 3.6371 (17) Å, observed for the planes through the thiophenyl ring and the phenyl ring (C13 to C18) of a neighboring molecule.

Related literature top

For the synthesis of thiophene derivatives, see: Kaleta et al. (2006); Minetto et al. (2005); Bayh et al. (2005). For their conformation, see: Alberti et al. (1986); Hagen (1986); Salman (1982) and for their applications, see: Seed et al. (2003); Cheylan et al. (2006); Karimian (2009); Kiryanov et al. (2001); Shi et al. (1996).

Experimental top

All chemicals used (reagent grade) were commercially available. A mass of 0.281 g (0.0020 mol) of 2,5-thiophenedicarboxaldehyde was dissolved in methanol (20 cm3), and 0.502 g (0.0040 mol) of 2-aminothiophenol was added with stirring. The mixture was heated under reflux for an hour, then cooled to room temperature and filtered. After standing at 0°C for 24 h, a yellow precipitate was collected. Recrystallization from ethanol gave yellow needles (0.378 g, 54 %), with the formulation C18H10N2S3 and suitable for X-ray analysis. M.p. 203–206 °C.

Refinement top

The C-bound H atoms were positioned geometrically (0.95 Å for CH) and treated as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probablility level).
[Figure 2] Fig. 2. The zig-zag-chains established by weak interactions of the type C–H···N.
2-[5-(Benzo[d]thiazol-2-yl)thiophen-2-yl]benzo[d]thiazole top
Crystal data top
C18H10N2S3F(000) = 720
Mr = 350.48Dx = 1.521 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.7297 (14) ÅCell parameters from 1275 reflections
b = 8.2396 (5) Åθ = 4.2–26.2°
c = 12.8160 (12) ŵ = 0.48 mm1
β = 112.872 (11)°T = 200 K
V = 1530.4 (2) Å3Needles, yellow
Z = 40.34 × 0.15 × 0.01 mm
Data collection top
Oxford XCalibur
diffractometer
3086 independent reflections
Radiation source: fine-focus sealed tube1452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 15.9809 pixels mm-1θmax = 26.3°, θmin = 4.2°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 910
Tmin = 0.839, Tmax = 1.000l = 915
5789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.72 w = 1/[σ2(Fo2) + (0.006P)2]
where P = (Fo2 + 2Fc2)/3
3086 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H10N2S3V = 1530.4 (2) Å3
Mr = 350.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7297 (14) ŵ = 0.48 mm1
b = 8.2396 (5) ÅT = 200 K
c = 12.8160 (12) Å0.34 × 0.15 × 0.01 mm
β = 112.872 (11)°
Data collection top
Oxford XCalibur
diffractometer
3086 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1452 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 1.000Rint = 0.053
5789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.72Δρmax = 0.29 e Å3
3086 reflectionsΔρmin = 0.30 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19188 (5)0.01268 (9)0.55789 (7)0.0372 (2)
S20.40390 (5)0.14749 (8)0.43819 (7)0.0294 (2)
S30.65397 (5)0.41064 (8)0.64495 (7)0.0351 (2)
N10.22730 (15)0.0478 (2)0.3780 (2)0.0306 (7)
N20.57525 (15)0.3239 (2)0.4337 (2)0.0258 (6)
C10.11335 (19)0.1200 (3)0.4461 (3)0.0294 (8)
C20.1446 (2)0.1266 (3)0.3573 (3)0.0299 (8)
C30.0918 (2)0.2090 (3)0.2584 (3)0.0393 (9)
H30.11190.21560.19750.047*
C40.0108 (2)0.2802 (3)0.2499 (3)0.0421 (9)
H40.02500.33690.18250.051*
C50.0200 (2)0.2717 (3)0.3369 (3)0.0436 (9)
H50.07660.32200.32840.052*
C60.0300 (2)0.1917 (3)0.4350 (3)0.0383 (9)
H60.00840.18510.49460.046*
C70.25959 (18)0.0157 (3)0.4775 (3)0.0252 (7)
C80.34453 (18)0.1056 (3)0.5237 (3)0.0233 (7)
C90.38812 (19)0.1676 (3)0.6290 (3)0.0321 (8)
H90.36560.15680.68750.039*
C100.46999 (19)0.2493 (3)0.6426 (2)0.0292 (8)
H100.50910.29880.71150.035*
C110.48737 (18)0.2503 (3)0.5468 (2)0.0242 (7)
C120.56531 (19)0.3212 (3)0.5304 (3)0.0252 (8)
C130.70982 (19)0.4587 (3)0.5569 (3)0.0278 (8)
C140.6576 (2)0.4025 (3)0.4477 (3)0.0280 (8)
C150.6891 (2)0.4295 (3)0.3612 (3)0.0372 (8)
H150.65460.39290.28620.045*
C160.7711 (2)0.5105 (3)0.3873 (3)0.0401 (9)
H160.79250.53130.32870.048*
C170.8235 (2)0.5627 (3)0.4957 (3)0.0392 (9)
H170.88060.61630.51090.047*
C180.79350 (19)0.5377 (3)0.5819 (3)0.0370 (9)
H180.82910.57350.65670.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0338 (5)0.0475 (5)0.0327 (6)0.0084 (4)0.0156 (4)0.0013 (4)
S20.0278 (4)0.0338 (4)0.0285 (5)0.0019 (4)0.0131 (4)0.0010 (4)
S30.0355 (5)0.0414 (5)0.0292 (6)0.0081 (4)0.0136 (4)0.0030 (4)
N10.0267 (16)0.0288 (16)0.039 (2)0.0070 (12)0.0154 (14)0.0019 (12)
N20.0235 (14)0.0293 (14)0.0270 (18)0.0032 (12)0.0124 (13)0.0000 (12)
C10.0301 (18)0.0262 (18)0.031 (2)0.0001 (15)0.0110 (16)0.0036 (14)
C20.0319 (19)0.0250 (18)0.031 (2)0.0034 (15)0.0107 (17)0.0043 (15)
C30.046 (2)0.045 (2)0.032 (2)0.0112 (17)0.0211 (19)0.0050 (17)
C40.037 (2)0.047 (2)0.037 (3)0.0182 (17)0.0080 (19)0.0047 (17)
C50.035 (2)0.048 (2)0.048 (3)0.0127 (17)0.016 (2)0.0046 (19)
C60.033 (2)0.046 (2)0.039 (3)0.0050 (17)0.0173 (19)0.0065 (18)
C70.0272 (19)0.0201 (16)0.031 (2)0.0017 (15)0.0142 (17)0.0023 (16)
C80.0214 (17)0.0226 (16)0.028 (2)0.0018 (14)0.0125 (16)0.0004 (15)
C90.0338 (19)0.0379 (18)0.030 (2)0.0021 (15)0.0182 (18)0.0067 (16)
C100.0250 (18)0.0350 (18)0.025 (2)0.0007 (15)0.0066 (16)0.0008 (15)
C110.0260 (18)0.0194 (16)0.025 (2)0.0006 (14)0.0079 (17)0.0001 (14)
C120.0295 (19)0.0170 (16)0.029 (2)0.0018 (14)0.0107 (17)0.0010 (14)
C130.0241 (18)0.0270 (18)0.036 (2)0.0003 (14)0.0154 (17)0.0032 (15)
C140.0318 (19)0.0253 (17)0.029 (2)0.0035 (15)0.0148 (17)0.0016 (15)
C150.045 (2)0.0423 (19)0.029 (2)0.0049 (17)0.0191 (18)0.0056 (16)
C160.041 (2)0.0410 (19)0.051 (3)0.0025 (17)0.033 (2)0.0007 (19)
C170.031 (2)0.0324 (18)0.056 (3)0.0053 (16)0.020 (2)0.0017 (18)
C180.0306 (19)0.039 (2)0.033 (2)0.0048 (15)0.0033 (17)0.0002 (16)
Geometric parameters (Å, º) top
S1—C11.728 (3)C6—H60.9500
S1—C71.761 (3)C7—C81.438 (3)
S2—C111.720 (3)C8—C91.353 (3)
S2—C81.729 (3)C9—C101.403 (3)
S3—C131.725 (3)C9—H90.9500
S3—C121.747 (3)C10—C111.357 (3)
N1—C71.286 (3)C10—H100.9500
N1—C21.384 (3)C11—C121.445 (3)
N2—C121.308 (3)C13—C181.389 (3)
N2—C141.397 (3)C13—C141.398 (4)
C1—C61.394 (3)C14—C151.396 (4)
C1—C21.404 (4)C15—C161.374 (3)
C2—C31.392 (3)C15—H150.9500
C3—C41.368 (4)C16—C171.380 (4)
C3—H30.9500C16—H160.9500
C4—C51.379 (4)C17—C181.375 (4)
C4—H40.9500C17—H170.9500
C5—C61.366 (4)C18—H180.9500
C5—H50.9500
C1—S1—C789.01 (14)C8—C9—H9123.5
C11—S2—C890.91 (14)C10—C9—H9123.5
C13—S3—C1289.42 (14)C11—C10—C9112.8 (3)
C7—N1—C2111.1 (3)C11—C10—H10123.6
C12—N2—C14109.4 (2)C9—C10—H10123.6
C6—C1—C2120.8 (3)C10—C11—C12127.9 (3)
C6—C1—S1129.9 (3)C10—C11—S2111.7 (2)
C2—C1—S1109.2 (2)C12—C11—S2120.3 (2)
N1—C2—C3125.9 (3)N2—C12—C11124.4 (3)
N1—C2—C1115.2 (3)N2—C12—S3116.0 (2)
C3—C2—C1118.9 (3)C11—C12—S3119.5 (2)
C4—C3—C2119.3 (3)C18—C13—C14121.4 (3)
C4—C3—H3120.4C18—C13—S3129.3 (3)
C2—C3—H3120.4C14—C13—S3109.2 (2)
C3—C4—C5121.5 (3)C15—C14—N2124.7 (3)
C3—C4—H4119.3C15—C14—C13119.4 (3)
C5—C4—H4119.3N2—C14—C13115.9 (3)
C6—C5—C4120.8 (3)C16—C15—C14118.3 (3)
C6—C5—H5119.6C16—C15—H15120.9
C4—C5—H5119.6C14—C15—H15120.9
C5—C6—C1118.6 (3)C15—C16—C17122.2 (3)
C5—C6—H6120.7C15—C16—H16118.9
C1—C6—H6120.7C17—C16—H16118.9
N1—C7—C8124.3 (3)C18—C17—C16120.3 (3)
N1—C7—S1115.5 (2)C18—C17—H17119.8
C8—C7—S1120.2 (2)C16—C17—H17119.8
C9—C8—C7129.4 (3)C17—C18—C13118.3 (3)
C9—C8—S2111.5 (2)C17—C18—H18120.8
C7—C8—S2119.1 (2)C13—C18—H18120.8
C8—C9—C10113.0 (3)
C7—S1—C1—C6178.8 (3)C9—C10—C11—C12179.3 (2)
C7—S1—C1—C20.3 (2)C9—C10—C11—S20.9 (3)
C7—N1—C2—C3179.5 (3)C8—S2—C11—C100.7 (2)
C7—N1—C2—C10.5 (3)C8—S2—C11—C12179.2 (2)
C6—C1—C2—N1178.7 (2)C14—N2—C12—C11179.5 (2)
S1—C1—C2—N10.5 (3)C14—N2—C12—S30.6 (3)
C6—C1—C2—C31.3 (4)C10—C11—C12—N2176.7 (3)
S1—C1—C2—C3179.5 (2)S2—C11—C12—N25.1 (4)
N1—C2—C3—C4179.5 (3)C10—C11—C12—S33.4 (4)
C1—C2—C3—C40.5 (4)S2—C11—C12—S3174.81 (13)
C2—C3—C4—C50.3 (5)C13—S3—C12—N20.6 (2)
C3—C4—C5—C60.3 (5)C13—S3—C12—C11179.5 (2)
C4—C5—C6—C10.6 (5)C12—S3—C13—C18179.6 (3)
C2—C1—C6—C51.4 (4)C12—S3—C13—C140.4 (2)
S1—C1—C6—C5179.6 (2)C12—N2—C14—C15178.8 (3)
C2—N1—C7—C8180.0 (2)C12—N2—C14—C130.2 (3)
C2—N1—C7—S10.3 (3)C18—C13—C14—C151.5 (4)
C1—S1—C7—N10.0 (2)S3—C13—C14—C15179.3 (2)
C1—S1—C7—C8179.7 (2)C18—C13—C14—N2179.4 (2)
N1—C7—C8—C9174.9 (3)S3—C13—C14—N20.2 (3)
S1—C7—C8—C95.4 (4)N2—C14—C15—C16179.2 (2)
N1—C7—C8—S25.6 (4)C13—C14—C15—C160.3 (4)
S1—C7—C8—S2174.02 (14)C14—C15—C16—C171.2 (4)
C11—S2—C8—C90.3 (2)C15—C16—C17—C181.4 (5)
C11—S2—C8—C7179.2 (2)C16—C17—C18—C130.1 (4)
C7—C8—C9—C10179.6 (2)C14—C13—C18—C171.3 (4)
S2—C8—C9—C100.1 (3)S3—C13—C18—C17179.7 (2)
C8—C9—C10—C110.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N1i0.952.633.444 (4)144
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H10N2S3
Mr350.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.7297 (14), 8.2396 (5), 12.8160 (12)
β (°) 112.872 (11)
V3)1530.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.34 × 0.15 × 0.01
Data collection
DiffractometerOxford XCalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.839, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5789, 3086, 1452
Rint0.053
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.051, 0.72
No. of reflections3086
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N1i0.952.633.444 (4)144.4
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

References

First citationAlberti, A., Chatgilialoglu, C. & Guerra, M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1179–1182.  CrossRef Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBayh, O., Awad, H., Mongin, F., Hoarau, C., Trecourt, F., Quequiner, G., Marsais, F., Blanco, F., Abarca, B. & Ballesteros, R. (2005). Tetrahedron, 61, 4779–4784.  Web of Science CrossRef CAS Google Scholar
First citationCheylan, S., Fraleoni-Morgera, A., Puigdollers, J., Voz, C., Setti, L., Alcubilla, R., Badenes, G., Costa-Bizzari, P. & Lanzi, M. (2006). Thin Solid Films, 497, 16–19.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHagen, K. (1986). J. Mol. Struct. 145, 359–366.  CrossRef CAS Web of Science Google Scholar
First citationKaleta, Z., Makowski, B. T., Soos, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarimian, K. (2009). Expert Opin. Ther. Pat. 19, 369–371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKiryanov, A. A., Seed, A. J. & Sampson, P. (2001). Tetrahedron Lett. 42, 8797–8800.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMinetto, G., Raveglia, L. F., Sega, A. & Taddei, M. (2005). Eur. J. Org. Chem. pp. 5277–5288.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationSalman, S. R. (1982). Org. Magn. Res. 20, 151–153.  CrossRef CAS Web of Science Google Scholar
First citationSeed, A. J., Cross, G. J., Toyne, K. J. & Goodby, J. W. (2003). Liq. Cryst. 30, 1089–1107.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds