organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o677-o678

1,3-Bis(phenyl­sufanylmeth­yl)benzene

aAdvanced Materials Laboratory, Sandia National Laboratories, 1001 University Blvd SE, Albuquerque, NM, 87106, USA, and bDepartment of Chemistry and Chemical Biology, MSC03 2060, 1 University of New Mexico, Albuquerque, NM, 87131, USA
*Correspondence e-mail: rakemp@unm.edu

(Received 11 December 2009; accepted 11 February 2010; online 20 February 2010)

The complete mol­ecule of the title compound, C20H18S2, is generated by crystallographic mirror symmetry, with two C atoms lying on the mirror plane. All of the independent atoms are contained within two planes defined by the thio­phenyl rings (C6S) and the central phenyl ring with the methyl­ene bridge; the r.m.s deviations of these planes are 0.012 and 0.025 Å, respectively. The two planes are almost perpendicular to one another at a dihedral angle of 80.24 (10)°. Inter­molecular C—H—π inter­actions are present in the crystal structure.

Related literature

For the use of the title compound as a ligand, see: Bu et al. (2002[Bu, X.-H., Hou, W.-F., Du, M., Chen, W. & Zhang, R.-H. (2002). Cryst. Growth Des. 2, 303-307.]); Romero et al. (1996[Romero, I., Sánchez-Castelló, G., Teixidor, F., Whitaker, C. R., Rius, J., Miravitlles, C., Flor, T., Escriche, L. & Casabó, J. (1996). Polyhedron 15, 2057-2065.]); Loeb & Wisner (1998[Loeb, S. J. & Wisner, J. A. (1998). Chem. Commun. pp. 2757-2758.]); Kruithof et al. (2008[Kruithof, C. A., Dijkstra, H. P., Lutz, M., Spek, A. L., Klein Gebbink, R. J. M. & van Koten, G. (2008). Organometallics 27, 4928-4937.]); Bergholdt et al. (1998[Bergholdt, A. B., Kobayashi, K., Horn, E., Takahashi, O., Sato, S., Furukawa, N., Yokoyama, M. & Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 1230-1236.]); Kobayashi et al. (2000[Kobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Angew. Chem. Int. Ed. 39, 1318-1320.]). For related organic mol­ecules, see: Cervantes et al. (2006[Cervantes, R., Castillejos, S., Loeb, S. J., Ortiz-Frade, L., Tiburcio, J. & Torrens, H. (2006). Eur. J. Inorg. Chem. pp. 1076-1083.]); Sillanpää et al. (1994[Sillanpää, R., Kivekäs, R., Escriche, L., Lucena, N., Teixidor, F. & Casabó, J. (1994). Acta Cryst. C50, 2049-2051.]); Arroyo et al. (2003[Arroyo, M., Cervantes, R., Gómez-Benìtez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565-1568.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18S2

  • Mr = 322.46

  • Orthorhombic, C m c 21

  • a = 32.072 (2) Å

  • b = 7.6053 (5) Å

  • c = 6.8224 (5) Å

  • V = 1664.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 228 K

  • 0.76 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.797, Tmax = 0.970

  • 14404 measured reflections

  • 1689 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.12

  • 1689 reflections

  • 103 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 738 Friedel pairs

  • Flack parameter: 0.05 (12)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C3′/C2′ and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.94 2.69 3.57 (5) 155
C1—H1ACg1ii 0.94 2.69 3.57 (5) 155
C7—H7ACg2iii 0.94 2.85 3.67 (6) 147
Symmetry codes: (i) [-x+1, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: XL in SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (McMahon & Westrip, 2008[McMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, 1,3-bis(phenylthiomethyl)benzene, belongs to a class of transition metal ligands known as SCS-pincer ligands because of their tendency to act as tridentate chelators through one carbon and two sulfur atoms. The plane containing the thiophenyl ring is rotated almost perpendicular to the plane of the central phenyl ring, at an angle of 80.24 (10)°. This is comparable to the para-fluoro (Cervantes et al., 2006) and ortho-ethylester (Sillanpää et al., 1994) derivatives, whose interplanar angles measure 78.13 (10) and 87.66 (10)° respectively. Surprisingly, in the only other structurally characterized derivative, the perfluorinated 1,3-bis(pentafluorophenylthiomethyl)benzene (Arroyo et al., 2003), the rings are nearly co-planar with angles of 8.93 (10) and 10.85 (9)° between the central phenyl and the two independent flanking perfluoro rings. In both the title compound and the para-fluoro derivative, the flanking aryl rings are oriented on the same face of the central ring.

Although the structure of the title compound has not been previously determined, several of its metal complexes are known. Two types of coordination were observered in structurally characterized metal complexes. In the presence of silver perchlorate (Bu et al., 2002) or silver nitrate (Romero et al., 1996), the title compound acts as a bridging ligand through sulfur. In these two complexes, the flanking aryls remain on the same face of the central ring. With Pd (Loeb & Wisner, 1998), Pt (Kruithof et al., 2008) and Te (Bergholdt et al., 1998; Kobayashi et al., 2000) the much more common trihapto-SCS "pincer"-type coordination is observed and the thiophenyl rings rotate to opposite faces of the central phenyl. In all seven examples, the mirror plane present within the free ligand has been broken. The nearly perpendicular orientation of the planes of flanking aryls and the central phenyl (80.24 (10)°) is maintained in each of the Te (Bergholdt et al., 1998; Kobayashi et al., 2000) and Pt (Kruithof et al., 2008) complexes, which have interplanar angles ranging from 77.8 (3) to 89.7 (3)°. In contrast, the interplanar angles in the Ag and Pd complexes cover a much wider range within and across the molecules, measuring 44.1 (6) and 65.5 (6)° in the AgClO4 based-complex (Bu et al., 2002), 44.5 (3) and 70.4 (2)° for AgNO3 (Romero et al., 1996), and 40.3 (12) and 88.8 (13)° at one end of the Pd-rotaxane and 41.9 (12) and 89.4 (13)° at the other (Loeb & Wisner, 1998).

Related literature top

For the use of the title compound as a ligand, see: Bu et al. (2002); Romero et al. (1996); Loeb & Wisner (1998); Kruithof et al. (2008); Bergholdt et al. (1998); Kobayashi et al. (2000). For related organic molecules, see: Cervantes et al. (2006); Sillanpää et al. (1994); Arroyo et al. (2003).

Experimental top

1,3-Bis((phenylthio)methyl)benzene was synthesized according to the literature method (Romero, et al. 1996). To grow crystals, a saturated solution of 1,3-bis((phenylthio)methyl)benzene was prepared in hot pentane. An aliquot of this saturated solution was transferred to a 20 ml vial, which was then tightly capped. The vial was placed in a bath of hot water and allowed to slowly cool to room temperature. Colorless, needle-like crystals of up to 10 mm in length formed over approximately 30 minutes. The solvent was then decanted and the crystals allowed to air dry. Several needles of ca. 1 mm in length were placed in a melting point capillary with an internal diameter 0.5 mm and the melting point was determined to be 84 - 86 °C.

Refinement top

Hydrogen atoms were included at geometrically idealized positions with C—H distances of 0.94 Å for aryl H atoms and 0.98 Å for methylene H atoms. The hydrogen atoms were treated as riding on their respective heavy atoms. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: XL in SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (McMahon & Westrip, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing full numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
1,3-Bis(phenylsufanylmethyl)benzene top
Crystal data top
C20H18S2Dx = 1.287 Mg m3
Mr = 322.46Melting point = 357–359 K
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 8194 reflections
a = 32.072 (2) Åθ = 2.8–28.1°
b = 7.6053 (5) ŵ = 0.31 mm1
c = 6.8224 (5) ÅT = 228 K
V = 1664.1 (2) Å3Needle, colourless
Z = 40.76 × 0.15 × 0.10 mm
F(000) = 680
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1689 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 4040
Tmin = 0.797, Tmax = 0.970k = 99
14404 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.6358P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1689 reflectionsΔρmax = 0.27 e Å3
103 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 736 Friedel pairs
38 constraintsAbsolute structure parameter: 0.05 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H18S2V = 1664.1 (2) Å3
Mr = 322.46Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 32.072 (2) ŵ = 0.31 mm1
b = 7.6053 (5) ÅT = 228 K
c = 6.8224 (5) Å0.76 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1417 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.970Rint = 0.052
14404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.27 e Å3
S = 1.12Δρmin = 0.31 e Å3
1689 reflectionsAbsolute structure: Flack (1983), 736 Friedel pairs
103 parametersAbsolute structure parameter: 0.05 (12)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.415866 (15)0.21909 (7)0.49099 (13)0.03480 (17)
C10.50000.3639 (4)0.7139 (5)0.0295 (7)
H1A0.50000.43120.59840.035*
C20.46220 (7)0.3148 (3)0.7983 (4)0.0295 (5)
C30.46271 (7)0.2166 (3)0.9699 (5)0.0362 (6)
H3A0.43740.18361.02900.043*
C40.50000.1671 (4)1.0546 (6)0.0406 (9)
H4A0.50000.09961.17000.049*
C50.42152 (7)0.3621 (3)0.7015 (4)0.0343 (6)
H5A0.42180.48550.66010.041*
H5B0.39830.34480.79280.041*
C60.36379 (7)0.2480 (3)0.4147 (4)0.0313 (5)
C70.33665 (6)0.3748 (3)0.4885 (5)0.0344 (5)
H7A0.34590.45470.58430.041*
C80.29608 (8)0.3827 (3)0.4201 (4)0.0400 (6)
H8A0.27790.46810.47100.048*
C90.28185 (8)0.2686 (3)0.2796 (4)0.0449 (7)
H9A0.25410.27500.23530.054*
C100.30905 (8)0.1432 (4)0.2032 (4)0.0467 (7)
H10A0.29980.06510.10580.056*
C110.34957 (8)0.1333 (3)0.2704 (4)0.0401 (6)
H11A0.36770.04830.21830.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (3)0.0375 (3)0.0348 (3)0.0052 (2)0.0004 (3)0.0071 (4)
C10.0353 (17)0.0270 (15)0.0264 (19)0.0000.0000.0012 (14)
C20.0326 (12)0.0268 (10)0.0290 (13)0.0000 (9)0.0007 (10)0.0049 (11)
C30.0406 (12)0.0326 (10)0.0356 (15)0.0048 (9)0.0095 (14)0.0008 (13)
C40.058 (2)0.0348 (17)0.029 (2)0.0000.0000.0085 (15)
C50.0304 (11)0.0341 (12)0.0382 (15)0.0018 (10)0.0014 (11)0.0071 (11)
C60.0316 (12)0.0328 (11)0.0295 (13)0.0041 (9)0.0021 (9)0.0027 (10)
C70.0321 (10)0.0384 (11)0.0327 (13)0.0010 (8)0.0007 (14)0.0038 (15)
C80.0355 (13)0.0476 (14)0.0369 (15)0.0035 (11)0.0043 (11)0.0001 (11)
C90.0335 (13)0.0581 (15)0.0430 (18)0.0060 (11)0.0051 (12)0.0049 (15)
C100.0478 (16)0.0509 (16)0.0413 (18)0.0095 (12)0.0065 (13)0.0095 (13)
C110.0446 (14)0.0375 (13)0.0381 (16)0.0002 (11)0.0010 (12)0.0101 (12)
Geometric parameters (Å, º) top
S1—C61.763 (2)C5—H5B0.9800
S1—C51.811 (2)C6—C111.392 (3)
C1—C2i1.393 (3)C6—C71.393 (3)
C1—C21.393 (3)C7—C81.384 (3)
C1—H1A0.9400C7—H7A0.9400
C2—C31.388 (4)C8—C91.371 (4)
C2—C51.506 (3)C8—H8A0.9400
C3—C41.381 (3)C9—C101.394 (4)
C3—H3A0.9400C9—H9A0.9400
C4—C3i1.381 (3)C10—C111.380 (3)
C4—H4A0.9400C10—H10A0.9400
C5—H5A0.9800C11—H11A0.9400
C6—S1—C5104.72 (11)C11—C6—C7119.0 (2)
C2i—C1—C2121.0 (3)C11—C6—S1116.16 (18)
C2i—C1—H1A119.5C7—C6—S1124.85 (19)
C2—C1—H1A119.5C8—C7—C6119.7 (2)
C3—C2—C1118.8 (2)C8—C7—H7A120.2
C3—C2—C5120.57 (19)C6—C7—H7A120.2
C1—C2—C5120.5 (2)C9—C8—C7121.4 (2)
C4—C3—C2120.6 (2)C9—C8—H8A119.3
C4—C3—H3A119.7C7—C8—H8A119.3
C2—C3—H3A119.7C8—C9—C10119.1 (2)
C3—C4—C3i120.1 (4)C8—C9—H9A120.5
C3—C4—H4A120.0C10—C9—H9A120.5
C3i—C4—H4A120.0C11—C10—C9120.2 (2)
C2—C5—S1106.92 (15)C11—C10—H10A119.9
C2—C5—H5A110.3C9—C10—H10A119.9
S1—C5—H5A110.3C10—C11—C6120.6 (2)
C2—C5—H5B110.3C10—C11—H11A119.7
S1—C5—H5B110.3C6—C11—H11A119.7
H5A—C5—H5B108.6
C2i—C1—C2—C30.6 (4)C5—S1—C6—C78.5 (2)
C2i—C1—C2—C5177.45 (19)C11—C6—C7—C81.1 (4)
C1—C2—C3—C40.6 (4)S1—C6—C7—C8178.7 (2)
C5—C2—C3—C4177.4 (2)C6—C7—C8—C90.4 (4)
C2—C3—C4—C3i0.7 (5)C7—C8—C9—C100.5 (4)
C3—C2—C5—S1104.0 (2)C8—C9—C10—C110.7 (4)
C1—C2—C5—S174.0 (2)C9—C10—C11—C60.0 (4)
C6—S1—C5—C2168.24 (15)C7—C6—C11—C100.9 (4)
C5—S1—C6—C11171.28 (19)S1—C6—C11—C10178.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C3'/C2' and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1ii0.942.693.57 (5)155
C1—H1A···Cg1iii0.942.693.57 (5)155
C7—H7A···Cg2iv0.942.853.67 (6)147
Symmetry codes: (ii) x+1, y+1, z1/2; (iii) x, y+1, z1/2; (iv) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18S2
Mr322.46
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)228
a, b, c (Å)32.072 (2), 7.6053 (5), 6.8224 (5)
V3)1664.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.76 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.797, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
14404, 1689, 1417
Rint0.052
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.12
No. of reflections1689
No. of parameters103
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31
Absolute structureFlack (1983), 736 Friedel pairs
Absolute structure parameter0.05 (12)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XS in SHELXTL (Sheldrick, 2008), XL in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (McMahon & Westrip, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C3'/C2' and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.942.693.57 (5)154.6
C1—H1A···Cg1ii0.942.693.57 (5)154.6
C7—H7A···Cg2iii0.942.853.67 (6)146.7
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

Funding was provided by a Department of Energy grant (DE–FG02-06ER15765 to RAK) and the Sandia LDRD progam (105932). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE–AC04-94 A L85000. The diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580).

References

First citationArroyo, M., Cervantes, R., Gómez-Benìtez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565–1568.  Web of Science CSD CrossRef Google Scholar
First citationBergholdt, A. B., Kobayashi, K., Horn, E., Takahashi, O., Sato, S., Furukawa, N., Yokoyama, M. & Yamaguchi, K. (1998). J. Am. Chem. Soc. 120, 1230–1236.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X.-H., Hou, W.-F., Du, M., Chen, W. & Zhang, R.-H. (2002). Cryst. Growth Des. 2, 303–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationCervantes, R., Castillejos, S., Loeb, S. J., Ortiz-Frade, L., Tiburcio, J. & Torrens, H. (2006). Eur. J. Inorg. Chem. pp. 1076–1083.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobayashi, K., Sato, S., Horn, E. & Furukawa, N. (2000). Angew. Chem. Int. Ed. 39, 1318–1320.  CrossRef CAS Google Scholar
First citationKruithof, C. A., Dijkstra, H. P., Lutz, M., Spek, A. L., Klein Gebbink, R. J. M. & van Koten, G. (2008). Organometallics 27, 4928–4937.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoeb, S. J. & Wisner, J. A. (1998). Chem. Commun. pp. 2757–2758.  Web of Science CSD CrossRef Google Scholar
First citationMcMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161.  CrossRef IUCr Journals Google Scholar
First citationRomero, I., Sánchez-Castelló, G., Teixidor, F., Whitaker, C. R., Rius, J., Miravitlles, C., Flor, T., Escriche, L. & Casabó, J. (1996). Polyhedron 15, 2057–2065.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSillanpää, R., Kivekäs, R., Escriche, L., Lucena, N., Teixidor, F. & Casabó, J. (1994). Acta Cryst. C50, 2049–2051.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o677-o678
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds