metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(di­methyl­formamide-κO)cobalt(II)]-bis­­[μ-(4-nitro­phenyl)­cyanamido]-κ2N1:N3;κ2N3:N1]

aDepartment of Chemistry, Isfahan University of Technology, Isfahan 84456-38111, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: chinif@cc.iut.ac.ir

(Received 4 January 2010; accepted 10 February 2010; online 24 February 2010)

In the title coordination polymer, [Co(C7H4N3O2)2(C3H7NO)]n, the CoII atom is five-coordinated in a distorted square-pyramidal CoON4 geometry with the O atom from a dimethyl­formamide mol­ecule in an equatorial position. The bridging phenyl­cyanamide anions generate an infinite chain propagating in [001].

Related literature

For background to models of ligand bonding, see: Storhoff & Lewis (1977[Storhoff, B. N. & Lewis, H. C. (1977). J. Coord. Chem. Rev. 23, 1-29.]); Chisholm et al. (1987[Chisholm, M. H., Hufman, J. C. & Marchant, N. S. (1987). Organometallics, 6, 1073-1080.]); Crutchley et al. (1999[Crutchley, R. J., Desjardins, P. & Yap, G. P. A. (1999). Inorg. Chem. 38, 5901-5905.]). For related structures, see: Escuer et al. (2003a[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003a). Dalton Trans. pp. 2121-2125.],b[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003b). Inorg. Chem. 42, 541-551.], 2004[Escuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409-1417.]); Chiniforoshan et al. (2009[Chiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.]). For further synthetic details, see: Crutchley & Naklicki (1989[Crutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955-1958.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H4N3O2)2(C3H7NO)]

  • Mr = 456.29

  • Monoclinic, P 21 /c

  • a = 21.8692 (16) Å

  • b = 8.8517 (6) Å

  • c = 9.9827 (8) Å

  • β = 100.151 (6)°

  • V = 1902.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 120 K

  • 0.30 × 0.12 × 0.10 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: numerical [optical; X-RED and X-SHAPE (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.740, Tmax = 0.800

  • 22258 measured reflections

  • 5131 independent reflections

  • 4161 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.104

  • S = 1.20

  • 5131 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O5 1.9807 (19)
Co1—N3 1.994 (2)
Co1—N5 2.198 (2)
Co1—N6i 1.971 (2)
Co1—N2i 2.2896 (19)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Phenylcyanamide ligands (Pcyd) are interesting and practically ligands from the synthetic and magnetic point of view. Recently, we have reported the first magnetic measurements on systems with different dimensionality containing the MnII-(NCN)2- unit (Escuer et al., 2003a,b) the cyanamido group(NCN) being coordinated in the end-to-end mode. From the synthetic point of view, pcyd ligands offer a wide range of possibilities based on the use different X-pcyd derivatives which can coordinate properties of the two nitrogen atoms: one N-nitrile, which coordinate preferently and one N-amide atom, with characteristic bond parameters in each case (Escuer et al., 2004). Following our work with this family of ligands, we now report four new CoII-Xpcyd compounds (using 4-nitro,4-fluoro,4-chloro,4-bromophenylcyanamide) in combination with the dimethylformamide ligand. These compounds contain the unusual end-to-end phenyl-cyanamide bridge and give supramolecular one dimensional network by means of H-bonds involving the N-amid atoms of the phenylcyanamide ligands. Side-on coordination of a nitrile group is extremely rare (Storhoff & Lewis, 1977) but is more common for cyanamide ligands due to the participation of the nitrile lone pair in bridging interaction (Chisholm et al., 1987). We are attempting to construct conductive polymer chains that are cross-linked by cyanamide groups to a coordination complex. Conductivity within this linked system will arise provided the polymer p-pi orbitals and the metal dp orbital are both symmetry and energy matched (Crutchley et al., 1999). More recently various aromatic cyanamide complexes have been studied by x-ray crystallography (Chiniforoshan et al., 2009).

We report here the synthesis and crystal structure of the title complex, (I).

In the molecule of the title compound, (I), (Fig. 1) the selected bond lengths and angles are listed in Table 1. in this molecule, the {Co(4—NO2-pcyd)2(DMF)}n one-dimensional chain coordination polymer bridged by 4-NO2-phenylcyanamide. Each cobalt atom has a distored square pyramidal geometry, that nitrogen atoms are in equatirial position and oxygen atom from DMF molecules is in axial position, Table 1. The dihedral angle between adjacent phenyl rings in the polymeric chain is 89.02 (10) °.

Related literature top

For background to models of ligand bonding, see: Storhoff & Lewis (1977); Chisholm et al. (1987); Crutchley et al. (1999). For related structures, see: Escuer et al. (2003a,b, 2004); Chiniforoshan et al. (2009). For further synthetic details, see: Crutchley & Naklicki (1989).

Experimental top

4-Nitrophenylcyanamide (Crutchley et al.,1989) (0.326 g, 0.5 mmol) was dissolved in methanol (25 ml) and was added slowly to a solution of cobalt(II) acetate (0.249 g, 0.25 mmol) in methanol (25 ml). The mixture was stirred for 5 h. The resulting solid was filtered off and violet needles of (I) obtained by dissolving in DMF then diffused by acetonitrile after 2 week.

Refinement top

All of the H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and aldehyde H atoms and with C—H = 0.93 Å for methyl hydrogens, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (30% probability displacement ellipsoids), (i) x,-y+1/2,z-1/2.
catena-Poly[[(dimethylformamide-κO)cobalt(II)]-bis[µ-(4- nitrophenyl)cyanamido]- κ2N1:N3;κ2N3:N1] top
Crystal data top
[Co(C7H4N3O2)2(C3H7NO)]F(000) = 932
Mr = 456.29Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 987 reflections
a = 21.8692 (16) Åθ = 1.9–29.3°
b = 8.8517 (6) ŵ = 0.95 mm1
c = 9.9827 (8) ÅT = 120 K
β = 100.151 (6)°Needle, violet
V = 1902.2 (2) Å30.3 × 0.12 × 0.1 mm
Z = 4
Data collection top
STOE IPDS II
diffractometer
5131 independent reflections
Radiation source: fine-focus sealed tube4161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
rotation method scansθmax = 29.3°, θmin = 1.9°
Absorption correction: numerical
[optical; X-RED and X-SHAPE (Stoe & Cie, 2005)]
h = 3030
Tmin = 0.740, Tmax = 0.800k = 1212
22258 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.1087P]
where P = (Fo2 + 2Fc2)/3
5131 reflections(Δ/σ)max = 0.023
273 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co(C7H4N3O2)2(C3H7NO)]V = 1902.2 (2) Å3
Mr = 456.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.8692 (16) ŵ = 0.95 mm1
b = 8.8517 (6) ÅT = 120 K
c = 9.9827 (8) Å0.3 × 0.12 × 0.1 mm
β = 100.151 (6)°
Data collection top
STOE IPDS II
diffractometer
5131 independent reflections
Absorption correction: numerical
[optical; X-RED and X-SHAPE (Stoe & Cie, 2005)]
4161 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.800Rint = 0.074
22258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.20Δρmax = 0.35 e Å3
5131 reflectionsΔρmin = 0.70 e Å3
273 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.40669 (12)0.4544 (3)0.2890 (2)0.0367 (5)
H10.37650.51070.23320.044*
C20.46736 (13)0.4600 (3)0.2693 (3)0.0418 (6)
H20.47820.52000.20070.050*
C30.51209 (12)0.3757 (3)0.3524 (3)0.0411 (6)
C40.49727 (12)0.2877 (3)0.4559 (3)0.0432 (6)
H40.52790.23260.51160.052*
C50.43659 (12)0.2821 (3)0.4759 (2)0.0392 (6)
H50.42640.22280.54570.047*
C60.39001 (10)0.3643 (3)0.3927 (2)0.0299 (4)
C70.31504 (10)0.2978 (3)0.5177 (2)0.0295 (4)
C80.08686 (12)0.0534 (3)0.6636 (2)0.0391 (6)
H80.11580.01630.70600.047*
C90.02663 (13)0.0479 (4)0.6859 (3)0.0455 (7)
H90.01450.02590.74200.055*
C100.01572 (12)0.1535 (4)0.6238 (3)0.0457 (7)
C110.00043 (13)0.2613 (4)0.5372 (3)0.0479 (7)
H110.02890.33000.49480.057*
C120.06063 (13)0.2663 (3)0.5141 (3)0.0421 (6)
H120.07200.33880.45570.051*
C130.10495 (11)0.1630 (3)0.5777 (2)0.0320 (5)
C140.17962 (11)0.2310 (3)0.4517 (2)0.0329 (5)
C150.26634 (13)0.1792 (3)0.7963 (3)0.0404 (6)
H150.28860.14600.87910.049*
C160.22430 (18)0.3852 (4)0.6534 (3)0.0590 (8)
H16A0.25220.44190.60840.071*
H16B0.20650.30410.59560.071*
H16C0.19180.45030.67260.071*
C170.28133 (19)0.4310 (4)0.8862 (4)0.0623 (9)
H17A0.24710.48040.91630.075*
H17B0.30560.37810.96120.075*
H17C0.30680.50500.85220.075*
Co10.246533 (14)0.14018 (3)0.72734 (3)0.02718 (9)
N10.57585 (12)0.3801 (4)0.3298 (3)0.0590 (7)
N20.32762 (9)0.3587 (2)0.40707 (17)0.0315 (4)
N30.29935 (9)0.2463 (2)0.61327 (19)0.0341 (4)
N40.07929 (13)0.1482 (4)0.6502 (3)0.0655 (8)
N50.16710 (9)0.1668 (2)0.56040 (18)0.0331 (4)
N60.19618 (10)0.2829 (3)0.3580 (2)0.0429 (5)
N70.25790 (11)0.3243 (2)0.7787 (2)0.0417 (5)
O10.61519 (11)0.3055 (4)0.4033 (3)0.0845 (9)
O20.58758 (13)0.4571 (5)0.2362 (4)0.1081 (12)
O30.11534 (13)0.2481 (5)0.6018 (3)0.0965 (11)
O40.09355 (14)0.0446 (5)0.7210 (3)0.1003 (11)
O50.24632 (10)0.0826 (2)0.70889 (18)0.0443 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (12)0.0426 (14)0.0319 (12)0.0053 (11)0.0057 (9)0.0042 (10)
C20.0403 (14)0.0475 (15)0.0397 (14)0.0138 (12)0.0128 (11)0.0023 (11)
C30.0308 (12)0.0495 (15)0.0439 (14)0.0093 (11)0.0090 (10)0.0164 (12)
C40.0332 (13)0.0552 (17)0.0398 (14)0.0041 (12)0.0024 (10)0.0030 (12)
C50.0384 (13)0.0484 (15)0.0308 (12)0.0026 (11)0.0063 (10)0.0051 (11)
C60.0299 (10)0.0337 (11)0.0258 (10)0.0057 (10)0.0040 (8)0.0036 (9)
C70.0275 (10)0.0345 (11)0.0253 (10)0.0014 (9)0.0014 (8)0.0020 (9)
C80.0400 (14)0.0454 (15)0.0327 (12)0.0077 (11)0.0083 (10)0.0024 (10)
C90.0438 (15)0.0599 (18)0.0349 (13)0.0200 (13)0.0126 (11)0.0042 (12)
C100.0331 (12)0.071 (2)0.0344 (12)0.0112 (13)0.0104 (10)0.0166 (13)
C110.0357 (14)0.067 (2)0.0403 (14)0.0050 (13)0.0050 (11)0.0051 (13)
C120.0382 (14)0.0554 (17)0.0331 (13)0.0019 (12)0.0073 (10)0.0057 (11)
C130.0306 (11)0.0429 (14)0.0223 (10)0.0048 (10)0.0038 (8)0.0019 (9)
C140.0255 (11)0.0475 (14)0.0250 (11)0.0020 (10)0.0021 (8)0.0006 (9)
C150.0488 (15)0.0371 (13)0.0353 (13)0.0011 (11)0.0070 (11)0.0001 (9)
C160.068 (2)0.0443 (17)0.065 (2)0.0063 (15)0.0124 (16)0.0074 (14)
C170.081 (3)0.0446 (17)0.063 (2)0.0005 (17)0.0191 (18)0.0159 (15)
Co10.03239 (15)0.02822 (15)0.02268 (13)0.00103 (14)0.00971 (10)0.00032 (12)
N10.0367 (13)0.077 (2)0.0663 (17)0.0085 (13)0.0166 (12)0.0189 (15)
N20.0314 (9)0.0402 (10)0.0232 (8)0.0030 (9)0.0053 (7)0.0037 (8)
N30.0279 (10)0.0477 (12)0.0263 (9)0.0028 (8)0.0037 (7)0.0051 (8)
N40.0382 (14)0.108 (3)0.0527 (15)0.0140 (17)0.0163 (12)0.0224 (17)
N50.0303 (9)0.0470 (12)0.0226 (9)0.0016 (8)0.0062 (7)0.0051 (8)
N60.0295 (10)0.0722 (16)0.0268 (10)0.0046 (10)0.0046 (8)0.0128 (10)
N70.0458 (12)0.0328 (11)0.0499 (12)0.0012 (10)0.0180 (10)0.0008 (9)
O10.0370 (12)0.122 (3)0.094 (2)0.0105 (15)0.0106 (13)0.0062 (18)
O20.0537 (17)0.154 (3)0.128 (3)0.0070 (18)0.0467 (18)0.039 (2)
O30.0409 (14)0.154 (3)0.097 (2)0.0129 (17)0.0192 (14)0.003 (2)
O40.0613 (17)0.146 (3)0.105 (2)0.0246 (19)0.0463 (16)0.010 (2)
O50.0588 (12)0.0305 (8)0.0408 (10)0.0021 (8)0.0012 (9)0.0004 (7)
Geometric parameters (Å, º) top
C1—C21.376 (4)C13—N51.400 (3)
C1—C61.405 (3)C14—N61.157 (3)
C1—H10.9300C14—N51.296 (3)
C2—C31.385 (4)C15—O51.245 (3)
C2—H20.9300C15—N71.305 (3)
C3—C41.377 (4)C15—H150.9300
C3—N11.452 (3)C16—N71.440 (4)
C4—C51.377 (4)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.400 (3)C16—H16C0.9600
C5—H50.9300C17—N71.453 (4)
C6—N21.398 (3)C17—H17A0.9600
C7—N31.162 (3)C17—H17B0.9600
C7—N21.301 (3)C17—H17C0.9600
C8—C91.375 (4)Co1—O51.9807 (19)
C8—C131.397 (3)Co1—N31.994 (2)
C8—H80.9300Co1—N52.198 (2)
C9—C101.383 (4)Co1—N6i1.971 (2)
C9—H90.9300Co1—N2i2.2896 (19)
C10—C111.375 (4)N1—O21.220 (4)
C10—N41.461 (3)N1—O11.222 (4)
C11—C121.377 (4)N2—Co1ii2.2896 (19)
C11—H110.9300N4—O31.226 (5)
C12—C131.400 (4)N4—O41.231 (4)
C12—H120.9300N6—Co1ii1.971 (2)
C2—C1—C6120.5 (2)N7—C16—H16A109.5
C2—C1—H1119.7N7—C16—H16B109.5
C6—C1—H1119.7H16A—C16—H16B109.5
C1—C2—C3119.5 (2)N7—C16—H16C109.5
C1—C2—H2120.3H16A—C16—H16C109.5
C3—C2—H2120.3H16B—C16—H16C109.5
C4—C3—C2121.3 (2)N7—C17—H17A109.5
C4—C3—N1119.4 (3)N7—C17—H17B109.5
C2—C3—N1119.2 (3)H17A—C17—H17B109.5
C3—C4—C5119.3 (3)N7—C17—H17C109.5
C3—C4—H4120.3H17A—C17—H17C109.5
C5—C4—H4120.3H17B—C17—H17C109.5
C4—C5—C6120.9 (2)N6i—Co1—O5114.40 (10)
C4—C5—H5119.5N6i—Co1—N3131.52 (10)
C6—C5—H5119.5O5—Co1—N3114.07 (9)
N2—C6—C5122.8 (2)N6i—Co1—N590.32 (8)
N2—C6—C1118.7 (2)O5—Co1—N592.72 (8)
C5—C6—C1118.4 (2)N3—Co1—N588.66 (8)
N3—C7—N2175.0 (2)N6i—Co1—N2i85.75 (8)
C9—C8—C13120.4 (3)O5—Co1—N2i93.78 (8)
C9—C8—H8119.8N3—Co1—N2i89.94 (8)
C13—C8—H8119.8N5—Co1—N2i173.35 (8)
C8—C9—C10119.3 (3)O2—N1—O1122.8 (3)
C8—C9—H9120.4O2—N1—C3118.1 (3)
C10—C9—H9120.4O1—N1—C3119.1 (3)
C11—C10—C9121.7 (2)C7—N2—C6117.25 (19)
C11—C10—N4119.6 (3)C7—N2—Co1ii114.63 (15)
C9—C10—N4118.7 (3)C6—N2—Co1ii123.69 (13)
C10—C11—C12119.1 (3)C7—N3—Co1159.71 (19)
C10—C11—H11120.4O3—N4—O4123.6 (3)
C12—C11—H11120.4O3—N4—C10118.2 (3)
C11—C12—C13120.6 (3)O4—N4—C10118.2 (3)
C11—C12—H12119.7C14—N5—C13117.8 (2)
C13—C12—H12119.7C14—N5—Co1115.24 (16)
C8—C13—C12118.9 (2)C13—N5—Co1123.95 (14)
C8—C13—N5118.6 (2)C14—N6—Co1ii164.6 (2)
C12—C13—N5122.5 (2)C15—N7—C16121.6 (3)
N6—C14—N5173.8 (3)C15—N7—C17121.1 (3)
O5—C15—N7123.9 (3)C16—N7—C17117.3 (3)
O5—C15—H15118.0C15—O5—Co1128.61 (18)
N7—C15—H15118.0
C6—C1—C2—C30.2 (4)C1—C6—N2—Co1ii37.3 (3)
C1—C2—C3—C40.9 (4)N6i—Co1—N3—C7104.7 (6)
C1—C2—C3—N1179.0 (2)O5—Co1—N3—C776.9 (6)
C2—C3—C4—C50.8 (4)N5—Co1—N3—C715.5 (6)
N1—C3—C4—C5179.1 (3)N2i—Co1—N3—C7171.0 (6)
C3—C4—C5—C60.0 (4)C11—C10—N4—O35.4 (4)
C4—C5—C6—N2178.2 (2)C9—C10—N4—O3175.4 (3)
C4—C5—C6—C10.7 (4)C11—C10—N4—O4175.3 (3)
C2—C1—C6—N2178.4 (2)C9—C10—N4—O43.9 (4)
C2—C1—C6—C50.7 (4)C8—C13—N5—C14157.8 (2)
C13—C8—C9—C100.9 (4)C12—C13—N5—C1423.2 (4)
C8—C9—C10—C111.9 (4)C8—C13—N5—Co142.7 (3)
C8—C9—C10—N4178.9 (3)C12—C13—N5—Co1136.2 (2)
C9—C10—C11—C121.4 (4)N6i—Co1—N5—C14133.7 (2)
N4—C10—C11—C12179.4 (3)O5—Co1—N5—C14111.83 (19)
C10—C11—C12—C130.0 (4)N3—Co1—N5—C142.21 (19)
C9—C8—C13—C120.5 (4)N6i—Co1—N5—C1326.2 (2)
C9—C8—C13—N5178.5 (2)O5—Co1—N5—C1388.3 (2)
C11—C12—C13—C80.9 (4)N3—Co1—N5—C13157.7 (2)
C11—C12—C13—N5178.0 (2)O5—C15—N7—C160.4 (4)
C4—C3—N1—O2178.9 (3)O5—C15—N7—C17178.6 (3)
C2—C3—N1—O21.0 (5)N7—C15—O5—Co1172.1 (2)
C4—C3—N1—O10.1 (4)N6i—Co1—O5—C1563.6 (3)
C2—C3—N1—O1180.0 (3)N3—Co1—O5—C15115.0 (2)
C5—C6—N2—C713.3 (4)N5—Co1—O5—C15155.2 (2)
C1—C6—N2—C7167.7 (2)N2i—Co1—O5—C1523.4 (3)
C5—C6—N2—Co1ii141.7 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H4N3O2)2(C3H7NO)]
Mr456.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)21.8692 (16), 8.8517 (6), 9.9827 (8)
β (°) 100.151 (6)
V3)1902.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.3 × 0.12 × 0.1
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionNumerical
[optical; X-RED and X-SHAPE (Stoe & Cie, 2005)]
Tmin, Tmax0.740, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
22258, 5131, 4161
Rint0.074
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.104, 1.20
No. of reflections5131
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.70

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O51.9807 (19)Co1—N6i1.971 (2)
Co1—N31.994 (2)Co1—N2i2.2896 (19)
Co1—N52.198 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to acknowledge Isfahan University of Technology for financial support.

References

First citationChiniforoshan, H., Jalilpour, S., Shirinfar, B. & Khavasi, H. R. (2009). Acta Cryst. E65, m386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChisholm, M. H., Hufman, J. C. & Marchant, N. S. (1987). Organometallics, 6, 1073–1080.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrutchley, R. J., Desjardins, P. & Yap, G. P. A. (1999). Inorg. Chem. 38, 5901–5905.  Google Scholar
First citationCrutchley, R. J. & Naklicki, M. L. (1989). Inorg. Chem. 28, 1955–1958.  CrossRef CAS Web of Science Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003a). Dalton Trans. pp. 2121–2125.  Web of Science CSD CrossRef Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2003b). Inorg. Chem. 42, 541–551.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEscuer, A., Mautner, F. A., Sanz, N. & Vicente, R. (2004). Polyhedron, 23, 1409–1417.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStorhoff, B. N. & Lewis, H. C. (1977). J. Coord. Chem. Rev. 23, 1–29.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds