supplementary materials


hb5316 scheme

Acta Cryst. (2010). E66, o627    [ doi:10.1107/S1600536810005532 ]

N'-(4-Chlorobenzylidene)furan-2-carbohydrazide monohydrate

J.-H. Jiang

Abstract top

In the title compound, C12H9ClN2O2·H2O, the dihedral angle between the aromatic rings is 13.9 (2)° and an intramolecular N-H...O hydrogen bond occurs. In the crystal structure, the components are linked by N-H...O, O-H...O and C-H...O hydrogen bonds.

Comment top

Schiff bases have received considerable attention in the literature. They are attractive from several points of view, such as the possibility of analytical application (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C7—N1 bond length of 1.342 (4)Å is longer than the C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds.

Related literature top

For background to Schiff bases, see: Cimerman et al. (1997). For a related structure, see: Girgis (2006).

Experimental top

A mixture of furan-2-carbohydrazide (0.1 mol), and 4-chlorobenzaldehyde (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.087 mol, yield 87%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT (Bruker 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
N'-(4-Chlorobenzylidene)furan-2-carbohydrazide monohydrate top
Crystal data top
C12H9ClN2O2·H2OF(000) = 276
Mr = 266.68Dx = 1.430 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2022 reflections
a = 4.5480 (9) Åθ = 3.3–27.3°
b = 12.423 (3) ŵ = 0.31 mm1
c = 10.971 (2) ÅT = 293 K
β = 91.90 (3)°Block, colourless
V = 619.5 (2) Å30.25 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1708 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
graphiteθmax = 27.5°, θmin = 3.3°
ω scansh = 55
5979 measured reflectionsk = 1616
2799 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2799 reflectionsΔρmax = 0.23 e Å3
171 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 1319 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (11)
Crystal data top
C12H9ClN2O2·H2OV = 619.5 (2) Å3
Mr = 266.68Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.5480 (9) ŵ = 0.31 mm1
b = 12.423 (3) ÅT = 293 K
c = 10.971 (2) Å0.25 × 0.20 × 0.18 mm
β = 91.90 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1708 reflections with I > 2σ(I)
5979 measured reflectionsRint = 0.042
2799 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145Δρmax = 0.23 e Å3
S = 1.04Δρmin = 0.33 e Å3
2799 reflectionsAbsolute structure: Flack (1983), 1319 Friedel pairs
171 parametersFlack parameter: 0.01 (11)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8615 (3)0.97667 (10)0.39621 (9)0.0713 (4)
O10.3072 (6)0.94704 (18)1.0474 (2)0.0525 (6)
O20.5944 (6)0.68010 (17)1.0623 (2)0.0457 (6)
N10.1934 (6)0.7961 (2)0.9399 (2)0.0412 (6)
H1A0.21360.72760.93230.049*
N20.0118 (6)0.8522 (2)0.8633 (2)0.0428 (7)
C10.6164 (11)0.8151 (4)0.5209 (4)0.0677 (12)
H1B0.70360.76920.46570.081*
C20.6554 (8)0.9240 (3)0.5124 (3)0.0527 (10)
C30.5303 (9)0.9909 (3)0.5956 (3)0.0568 (9)
H3A0.56191.06470.59070.068*
C40.3591 (9)0.9509 (3)0.6861 (3)0.0544 (10)
H4A0.27620.99750.74170.065*
C50.3098 (8)0.8405 (3)0.6946 (3)0.0466 (8)
C60.4448 (10)0.7733 (3)0.6129 (4)0.0616 (11)
H6A0.42090.69920.61930.074*
C70.3375 (7)0.8492 (3)1.0262 (3)0.0409 (7)
C80.1202 (8)0.7935 (3)0.7861 (3)0.0466 (8)
H8A0.09500.71920.78810.056*
C90.5355 (7)0.7844 (3)1.0984 (3)0.0398 (7)
C100.6880 (9)0.8080 (3)1.1980 (3)0.0483 (9)
H10A0.68930.87331.23930.058*
C110.8474 (9)0.7132 (3)1.2281 (3)0.0515 (9)
H11A0.97220.70441.29280.062*
C120.7811 (9)0.6394 (3)1.1444 (3)0.0513 (9)
H12A0.85360.56941.14280.062*
O1W0.1978 (8)0.5707 (2)0.8764 (3)0.0596 (8)
H1W0.037 (11)0.526 (4)0.906 (4)0.084 (15)*
H2W0.372 (13)0.537 (4)0.893 (4)0.093 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0710 (7)0.0849 (8)0.0595 (5)0.0026 (6)0.0271 (5)0.0050 (5)
O10.0543 (16)0.0340 (13)0.0700 (15)0.0032 (11)0.0163 (12)0.0029 (12)
O20.0529 (15)0.0354 (12)0.0497 (13)0.0044 (11)0.0163 (11)0.0023 (10)
N10.0388 (16)0.0333 (14)0.0522 (15)0.0034 (12)0.0113 (12)0.0006 (13)
N20.0353 (15)0.0413 (15)0.0521 (16)0.0009 (13)0.0071 (13)0.0022 (13)
C10.081 (3)0.064 (3)0.060 (2)0.003 (2)0.034 (2)0.012 (2)
C20.044 (2)0.064 (3)0.051 (2)0.0025 (18)0.0087 (16)0.0037 (17)
C30.065 (2)0.050 (2)0.056 (2)0.007 (2)0.0161 (18)0.0020 (19)
C40.060 (2)0.048 (2)0.058 (2)0.0010 (18)0.0225 (18)0.0051 (18)
C50.042 (2)0.051 (2)0.0475 (19)0.0007 (17)0.0098 (15)0.0014 (16)
C60.072 (3)0.051 (2)0.063 (2)0.008 (2)0.025 (2)0.0125 (19)
C70.0359 (18)0.0370 (18)0.0503 (18)0.0050 (15)0.0092 (14)0.0040 (15)
C80.044 (2)0.0413 (18)0.0550 (19)0.0018 (16)0.0117 (16)0.0042 (16)
C90.0392 (19)0.0361 (17)0.0442 (16)0.0035 (15)0.0045 (14)0.0028 (14)
C100.052 (2)0.045 (2)0.0493 (18)0.0023 (16)0.0125 (16)0.0033 (16)
C110.054 (2)0.048 (2)0.053 (2)0.0092 (17)0.0221 (17)0.0093 (17)
C120.059 (2)0.042 (2)0.055 (2)0.0053 (17)0.0195 (18)0.0072 (16)
O1W0.053 (2)0.0392 (14)0.087 (2)0.0005 (14)0.0169 (16)0.0001 (14)
Geometric parameters (Å, °) top
Cl1—C21.735 (4)C4—H4A0.9300
O1—C71.244 (4)C5—C61.384 (5)
O2—C121.356 (4)C5—C81.466 (5)
O2—C91.379 (4)C6—H6A0.9300
N1—C71.342 (4)C7—C91.461 (5)
N1—N21.386 (4)C8—H8A0.9300
N1—H1A0.8600C9—C101.346 (5)
N2—C81.282 (4)C10—C111.427 (6)
C1—C21.368 (6)C10—H10A0.9300
C1—C61.396 (6)C11—C121.339 (5)
C1—H1B0.9300C11—H11A0.9300
C2—C31.372 (5)C12—H12A0.9300
C3—C41.375 (5)O1W—H1W0.97 (5)
C3—H3A0.9300O1W—H2W0.92 (6)
C4—C51.393 (5)
C12—O2—C9106.2 (3)C5—C6—H6A119.5
C7—N1—N2119.7 (3)C1—C6—H6A119.5
C7—N1—H1A120.1O1—C7—N1123.9 (3)
N2—N1—H1A120.1O1—C7—C9120.2 (3)
C8—N2—N1114.6 (3)N1—C7—C9115.8 (3)
C2—C1—C6119.6 (4)N2—C8—C5121.7 (3)
C2—C1—H1B120.2N2—C8—H8A119.2
C6—C1—H1B120.2C5—C8—H8A119.2
C1—C2—C3119.7 (4)C10—C9—O2109.7 (3)
C1—C2—Cl1119.8 (3)C10—C9—C7131.6 (3)
C3—C2—Cl1120.5 (3)O2—C9—C7118.6 (3)
C2—C3—C4121.3 (4)C9—C10—C11106.7 (3)
C2—C3—H3A119.4C9—C10—H10A126.6
C4—C3—H3A119.4C11—C10—H10A126.6
C3—C4—C5120.0 (4)C12—C11—C10106.2 (3)
C3—C4—H4A120.0C12—C11—H11A126.9
C5—C4—H4A120.0C10—C11—H11A126.9
C6—C5—C4118.4 (4)C11—C12—O2111.1 (3)
C6—C5—C8119.1 (3)C11—C12—H12A124.4
C4—C5—C8122.5 (3)O2—C12—H12A124.4
C5—C6—C1121.0 (4)H1W—O1W—H2W109 (5)
C7—N1—N2—C8178.5 (3)C6—C5—C8—N2179.5 (3)
C6—C1—C2—C31.2 (7)C4—C5—C8—N20.2 (6)
C6—C1—C2—Cl1178.5 (3)C12—O2—C9—C101.6 (4)
C1—C2—C3—C41.7 (6)C12—O2—C9—C7180.0 (3)
Cl1—C2—C3—C4178.0 (3)O1—C7—C9—C106.7 (6)
C2—C3—C4—C50.0 (6)N1—C7—C9—C10172.3 (4)
C3—C4—C5—C62.1 (6)O1—C7—C9—O2171.4 (3)
C3—C4—C5—C8177.6 (3)N1—C7—C9—O29.6 (4)
C4—C5—C6—C12.6 (6)O2—C9—C10—C111.1 (4)
C8—C5—C6—C1177.1 (4)C7—C9—C10—C11179.3 (3)
C2—C1—C6—C51.0 (7)C9—C10—C11—C120.3 (4)
N2—N1—C7—O14.2 (5)C10—C11—C12—O20.7 (4)
N2—N1—C7—C9176.9 (3)C9—O2—C12—C111.4 (4)
N1—N2—C8—C5177.2 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.97 (5)1.90 (5)2.865 (4)174 (5)
O1W—H2W···O1ii0.92 (6)1.97 (6)2.873 (4)168 (5)
N1—H1A···O20.862.362.715 (4)106
N1—H1A···O1W0.862.052.886 (4)165
C8—H8A···O1W0.932.493.290 (5)144
Symmetry codes: (i) −x, y−1/2, −z+2; (ii) −x−1, y−1/2, −z+2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.97 (5)1.90 (5)2.865 (4)174 (5)
O1W—H2W···O1ii0.92 (6)1.97 (6)2.873 (4)168 (5)
N1—H1A···O20.862.362.715 (4)106
N1—H1A···O1W0.862.052.886 (4)165
C8—H8A···O1W0.932.493.290 (5)144
Symmetry codes: (i) −x, y−1/2, −z+2; (ii) −x−1, y−1/2, −z+2.
references
References top

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta., 343, 145-153.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Girgis, A. S. (2006). J. Chem. Res. pp. 81–85.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.