organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o506-o507

N-(4-Chloro­phen­yl)-1,1,1-tri­fluoro-N-(tri­fluoro­methyl­sulfon­yl)methane­sulfonamide

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Quıímica, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 January 2010; accepted 27 January 2010; online 3 February 2010)

The title mol­ecule, also called 4-chloro-N,N-bis­(trifluoro­methane­sulfon­yl)aniline, C8H4ClF6NO4S2, has non-crystallographic twofold symmetry with the pseudo-axis aligned along the Cl—C⋯C—N backbone of the mol­ecule: the SO2CF3 residues lie to either side of the benzene ring. In the crystal, the presence of C—H⋯O contacts lead to the formation of a sequence of 12-membered {⋯HC2NSO}2 synthons within a supra­molecular chain aligned along [101].

Related literature

For uses of N,N-bis­(trifluoro­methane­sulfon­yl)aniline derivatives, see: Zeller (2001[Zeller, W. E. (2001). In E-EROS Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.]); Wulff et al. (1986[Wulff, W., Peterson, G., Bauta, W., Chan, K. S., Faron, K., Gilbertson, S., Kaesler, R., Yang, D. & Murray, C. (1986). J. Org. Chem. 51, 277-279.]). For general background to the synthesis, see: Deprez et al. (1995[Deprez, P., Guillaume, J., Becker, R., Corbier, A., Didierlaurent, S., Fortin, M., Frechet, D., Hamon, G., Heckman, B., Heitsch, H., Kleeman, H.-W., Vevert, J. P., Vincent, J. C., Wagner, A. & Zhang, J. (1995). J. Med. Chem. 38, 2357-2377.]); Greenfield & Crosanu (2008[Greenfield, L. A. & Crosanu, C. (2008). Tetrahedron Lett. 49, 6300-6303.]). For a previous synthesis of the title compound, see: Laali et al. (2007[Laali, K. K., Okazaki, T. & Bunge, S. D. (2007). J. Org. Chem. 72, 6758-6762.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4ClF6NO4S2

  • Mr = 391.70

  • Monoclinic, P 21 /c

  • a = 11.5998 (3) Å

  • b = 13.4423 (4) Å

  • c = 9.0548 (2) Å

  • β = 108.014 (2)°

  • V = 1342.69 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 120 K

  • 0.40 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 1.000

  • 17100 measured reflections

  • 3047 independent reflections

  • 2806 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.04

  • 3047 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.57 3.496 (2) 164
C5—H5⋯O1ii 0.95 2.59 3.385 (2) 141
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

N,N-Bis(trifluoromethanesulfonyl)aniline derivatives find use in synthetic chemistry such as mild triflating reagents (Zeller, 2001; Wulff et al., 1986). Following a literature procedure to p-ClC6H4NHSO2CF3, using p-ClC6H4NH2, (F3CSO2)O and Et3N in CH2Cl2 at 213 K, a little of the di-substituted compound, p-ClC6H4(NSO2CF3), (I), was isolated as a side-product (Greenfield & Crosanu, 2008; Deprez et al., 1995). Compound (I) has been reported previously (Laali et al., 2007) and the X-ray structure determination is reported herein.

In (I), the SO2CF3 groups occupy approximately orthogonal positions to either side of the aromatic ring: the C3/C4/N1/S1, S2 torsion angles are 77.44 (17) and -101.55 (15) °, respectively; the dihedral angle formed between the benzene ring and NS2 group is 78.13 (6) °. The CF3 groups lie to either side of the molecule and fold back over the benzene ring so that, overall, the molecule has non-crystallographic 2-fold symmetry when viewed down the Cl1–C1–C4–N1 axis.

Supramolecular aggregation in (I) is dominated by C–H···O interactions that lead to the formation of a sequence of 12-membered {···HC2NSO}2 synthons aligned along [1 0 1], Fig. 2 and Table 1. Chains are connected into layers through the agency of C–Cl···π interactions between centrosymmetrically related residues [C1–Cl1···ring centroid(C1–C6)i = 3.4592 (8) Å with angle at Cl1 = 92.46 (6) ° for i: 2-x, 2-y, 1-z]. The layers thus formed stack along the b axis with the closest contacts between successive layers being of the type C–F···π [C8–F4···ring centroid(C1–C6)ii = 3.4708 (16) Å with angle at F4 = 122.83 (11) ° for ii: x, 3/2-y,1/2+z].

Related literature top

For uses of N,N-bis(trifluoromethanesulfonyl)aniline derivatives, see: Zeller (2001); Wulff et al. (1986). For general background to the synthesis, see: Deprez et al. (1995); Greenfield & Crosanu (2008). For a previous synthesis of the title compound, see: Laali et al. (2007).

Experimental top

To a cooled (213 K) solution of p-ClC6H4NH2 (11.5 g, 9.0 mmol) and triethylamine (1.50 ml; 10.8 mmol, 1.20 eq.) in CH2Cl2 (40 ml) was slowly added a solution of trifluoromethanesulfonic anhydride (2.40 ml; 13.5 mmol, 1.50 eq) in CH2Cl2 (40 ml). After the mixture was stirred at 213-223 K for 1 h, water (30 ml) was added. The mixture was allowed to warm to room temperature, and the organic layer was decanted, washed with water, dried, and evaporated. The products, N-(4-chlorophenyl)trifluoromethylsulfonamide and N-(4-chlorophenyl)-bis-trifluoromethylsulfonamide, (I), were purified by chromatography on silica gel with hexane as eluent. Products were recrystallized from hexane. Characterisation data for (I): m.pt. 346-348 K, 1H-NMR (500 MHz, CDCl3) δ: 7.34 (2H), 7.50 (2H) p.p.m. 13C-NMR (125 MHz, CDCl3) δ: 119.36 (q, 1J(C,F) = 325 Hz), 125.17 (C3), 130.06, 132.18, 138.84 p.p.m. 19F-NMR (376 MHz, CDCl3) δ: 71.11 p.p.m.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) aligned along [1 0 1] and mediated by C–H···O interactions (blue dashed lines). Colour code: Cl, cyan; S, yellow; F, pink; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. View of the stacking of layers in (I). The C–H···O interactions are shown as blue dashed lines. Colour code: Cl, cyan; S, yellow; F, pink; O, red; N, blue; C, grey; and H, green.
N-(4-Chlorophenyl)-1,1,1-trifluoro-N- (trifluoromethylsulfonyl)methanesulfonamide top
Crystal data top
C8H4ClF6NO4S2F(000) = 776
Mr = 391.70Dx = 1.938 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2983 reflections
a = 11.5998 (3) Åθ = 2.9–27.5°
b = 13.4423 (4) ŵ = 0.68 mm1
c = 9.0548 (2) ÅT = 120 K
β = 108.014 (2)°Block, colourless
V = 1342.69 (6) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
3047 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2806 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.023
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1717
Tmin = 0.821, Tmax = 1.000l = 1111
17100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.1662P]
where P = (Fo2 + 2Fc2)/3
3047 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C8H4ClF6NO4S2V = 1342.69 (6) Å3
Mr = 391.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5998 (3) ŵ = 0.68 mm1
b = 13.4423 (4) ÅT = 120 K
c = 9.0548 (2) Å0.40 × 0.25 × 0.25 mm
β = 108.014 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3047 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2806 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 1.000Rint = 0.023
17100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
3047 reflectionsΔρmin = 0.41 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.97286 (4)0.86092 (3)0.34987 (5)0.02733 (12)
S10.78053 (4)1.09197 (3)0.91222 (4)0.01889 (11)
S20.59031 (4)0.94255 (3)0.78741 (5)0.01943 (11)
F10.70006 (16)1.20000 (9)0.66292 (14)0.0497 (4)
F20.75847 (13)1.28200 (9)0.87505 (16)0.0449 (3)
F30.58975 (12)1.20628 (11)0.8139 (2)0.0551 (4)
F40.69058 (14)0.77016 (10)0.86879 (18)0.0525 (4)
F50.71980 (16)0.87281 (11)1.05802 (17)0.0663 (5)
F60.54674 (13)0.80495 (10)0.96076 (16)0.0478 (3)
O10.90194 (11)1.10259 (10)0.91208 (15)0.0280 (3)
O20.74816 (13)1.08338 (10)1.04986 (15)0.0293 (3)
O30.54372 (11)0.89593 (10)0.64061 (14)0.0254 (3)
O40.52094 (12)1.00882 (11)0.84680 (16)0.0308 (3)
N10.72049 (12)0.99798 (10)0.79108 (15)0.0167 (3)
C10.89885 (15)0.90047 (12)0.4795 (2)0.0192 (3)
C20.79853 (15)0.96166 (12)0.42518 (19)0.0201 (3)
H20.77060.98120.31920.024*
C30.73954 (14)0.99385 (12)0.52852 (18)0.0182 (3)
H30.67041.03580.49430.022*
C40.78292 (14)0.96396 (12)0.68241 (18)0.0162 (3)
C50.88287 (15)0.90243 (12)0.73621 (19)0.0198 (3)
H50.91060.88240.84200.024*
C60.94185 (15)0.87055 (12)0.6327 (2)0.0218 (3)
H61.01100.82860.66680.026*
C70.70024 (18)1.20199 (13)0.8072 (2)0.0258 (4)
C80.64203 (18)0.84073 (14)0.9298 (2)0.0301 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0291 (2)0.0285 (2)0.0294 (2)0.00347 (16)0.01644 (18)0.01089 (17)
S10.0231 (2)0.0187 (2)0.01481 (19)0.00119 (14)0.00583 (15)0.00231 (13)
S20.0178 (2)0.0220 (2)0.0187 (2)0.00101 (14)0.00585 (15)0.00126 (14)
F10.0996 (12)0.0286 (6)0.0236 (6)0.0191 (7)0.0229 (7)0.0060 (5)
F20.0691 (9)0.0188 (5)0.0461 (7)0.0062 (6)0.0167 (7)0.0067 (5)
F30.0402 (7)0.0402 (7)0.0918 (12)0.0177 (6)0.0303 (8)0.0267 (7)
F40.0650 (9)0.0347 (7)0.0620 (9)0.0206 (7)0.0257 (8)0.0194 (6)
F50.0872 (11)0.0427 (8)0.0367 (7)0.0277 (8)0.0281 (7)0.0189 (6)
F60.0593 (9)0.0433 (7)0.0469 (8)0.0179 (6)0.0252 (7)0.0100 (6)
O10.0216 (6)0.0317 (7)0.0290 (7)0.0046 (5)0.0053 (5)0.0099 (5)
O20.0462 (8)0.0276 (7)0.0174 (6)0.0026 (6)0.0146 (6)0.0025 (5)
O30.0211 (6)0.0313 (7)0.0216 (6)0.0065 (5)0.0032 (5)0.0025 (5)
O40.0267 (7)0.0358 (7)0.0357 (7)0.0025 (6)0.0182 (6)0.0020 (6)
N10.0178 (6)0.0171 (6)0.0158 (6)0.0006 (5)0.0060 (5)0.0025 (5)
C10.0216 (8)0.0159 (7)0.0226 (8)0.0044 (6)0.0105 (6)0.0059 (6)
C20.0241 (8)0.0204 (8)0.0152 (7)0.0020 (6)0.0055 (6)0.0020 (6)
C30.0182 (7)0.0175 (7)0.0171 (7)0.0018 (6)0.0027 (6)0.0002 (6)
C40.0163 (7)0.0166 (7)0.0160 (7)0.0004 (6)0.0055 (6)0.0015 (6)
C50.0197 (8)0.0207 (8)0.0176 (8)0.0021 (6)0.0038 (6)0.0024 (6)
C60.0190 (8)0.0193 (8)0.0269 (8)0.0029 (6)0.0069 (7)0.0003 (6)
C70.0371 (10)0.0185 (8)0.0244 (9)0.0017 (7)0.0134 (7)0.0002 (6)
C80.0360 (10)0.0247 (9)0.0258 (9)0.0082 (7)0.0040 (8)0.0053 (7)
Geometric parameters (Å, º) top
Cl1—C11.7380 (16)F5—C81.304 (2)
S1—O21.4131 (13)F6—C81.313 (2)
S1—O11.4160 (13)N1—C41.4637 (19)
S1—N11.6769 (13)C1—C61.381 (2)
S1—C71.8470 (18)C1—C21.385 (2)
S2—O41.4135 (13)C2—C31.388 (2)
S2—O31.4168 (13)C2—H20.9500
S2—N11.6749 (14)C3—C41.387 (2)
S2—C81.8483 (19)C3—H30.9500
F1—C71.306 (2)C4—C51.384 (2)
F2—C71.317 (2)C5—C61.388 (2)
F3—C71.303 (2)C5—H50.9500
F4—C81.309 (3)C6—H60.9500
O2—S1—O1123.00 (9)C2—C3—H3120.5
O2—S1—N1110.21 (8)C5—C4—C3122.06 (15)
O1—S1—N1106.70 (7)C5—C4—N1119.00 (14)
O2—S1—C7106.88 (8)C3—C4—N1118.94 (14)
O1—S1—C7105.19 (9)C4—C5—C6118.75 (15)
N1—S1—C7103.02 (8)C4—C5—H5120.6
O4—S2—O3122.60 (8)C6—C5—H5120.6
O4—S2—N1109.14 (8)C1—C6—C5119.21 (15)
O3—S2—N1107.18 (7)C1—C6—H6120.4
O4—S2—C8107.55 (9)C5—C6—H6120.4
O3—S2—C8105.91 (8)F3—C7—F1110.51 (18)
N1—S2—C8102.67 (8)F3—C7—F2108.18 (16)
C4—N1—S2118.56 (10)F1—C7—F2109.00 (16)
C4—N1—S1118.91 (10)F3—C7—S1110.98 (13)
S2—N1—S1122.53 (8)F1—C7—S1110.08 (12)
C6—C1—C2122.17 (15)F2—C7—S1108.03 (13)
C6—C1—Cl1119.27 (13)F5—C8—F4110.23 (19)
C2—C1—Cl1118.56 (13)F5—C8—F6109.09 (18)
C1—C2—C3118.74 (15)F4—C8—F6108.97 (16)
C1—C2—H2120.6F5—C8—S2111.24 (13)
C3—C2—H2120.6F4—C8—S2109.37 (13)
C4—C3—C2119.07 (15)F6—C8—S2107.89 (14)
C4—C3—H3120.5
O4—S2—N1—C4155.34 (12)N1—C4—C5—C6179.88 (14)
O3—S2—N1—C420.57 (14)C2—C1—C6—C50.1 (3)
C8—S2—N1—C490.75 (13)Cl1—C1—C6—C5179.81 (13)
O4—S2—N1—S123.61 (12)C4—C5—C6—C10.4 (2)
O3—S2—N1—S1158.38 (9)O2—S1—C7—F340.94 (16)
C8—S2—N1—S190.29 (11)O1—S1—C7—F3173.17 (14)
O2—S1—N1—C4151.50 (12)N1—S1—C7—F375.21 (15)
O1—S1—N1—C415.75 (14)O2—S1—C7—F1163.59 (14)
C7—S1—N1—C494.75 (13)O1—S1—C7—F164.17 (16)
O2—S1—N1—S229.55 (12)N1—S1—C7—F147.44 (16)
O1—S1—N1—S2165.30 (9)O2—S1—C7—F277.50 (14)
C7—S1—N1—S284.20 (11)O1—S1—C7—F254.73 (14)
C6—C1—C2—C30.0 (2)N1—S1—C7—F2166.35 (12)
Cl1—C1—C2—C3179.66 (12)O4—S2—C8—F567.64 (18)
C1—C2—C3—C40.1 (2)O3—S2—C8—F5159.68 (16)
C2—C3—C4—C50.4 (2)N1—S2—C8—F547.42 (18)
C2—C3—C4—N1179.97 (14)O4—S2—C8—F4170.36 (13)
S2—N1—C4—C5102.12 (15)O3—S2—C8—F437.69 (16)
S1—N1—C4—C578.89 (17)N1—S2—C8—F474.58 (15)
S2—N1—C4—C377.44 (17)O4—S2—C8—F651.97 (16)
S1—N1—C4—C3101.55 (15)O3—S2—C8—F680.71 (15)
C3—C4—C5—C60.6 (2)N1—S2—C8—F6167.02 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.573.496 (2)164
C5—H5···O1ii0.952.593.385 (2)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC8H4ClF6NO4S2
Mr391.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.5998 (3), 13.4423 (4), 9.0548 (2)
β (°) 108.014 (2)
V3)1342.69 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.821, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17100, 3047, 2806
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.04
No. of reflections3047
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.41

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.573.496 (2)164
C5—H5···O1ii0.952.593.385 (2)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDeprez, P., Guillaume, J., Becker, R., Corbier, A., Didierlaurent, S., Fortin, M., Frechet, D., Hamon, G., Heckman, B., Heitsch, H., Kleeman, H.-W., Vevert, J. P., Vincent, J. C., Wagner, A. & Zhang, J. (1995). J. Med. Chem. 38, 2357–2377.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreenfield, L. A. & Crosanu, C. (2008). Tetrahedron Lett. 49, 6300–6303.  Web of Science CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLaali, K. K., Okazaki, T. & Bunge, S. D. (2007). J. Org. Chem. 72, 6758–6762.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWulff, W., Peterson, G., Bauta, W., Chan, K. S., Faron, K., Gilbertson, S., Kaesler, R., Yang, D. & Murray, C. (1986). J. Org. Chem. 51, 277–279.  CrossRef CAS Web of Science Google Scholar
First citationZeller, W. E. (2001). In E-EROS Encyclopedia of Reagents for Organic Synthesis. Chichester: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o506-o507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds