organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl 3-(2-methyl­prop-3-yl) 2,6-di­methyl-4-(2-nitro­sophen­yl)pyridine-3,5-di­carboxyl­ate

aSchool of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: jiangru@fmmu.edu.cn

(Received 26 January 2010; accepted 8 February 2010; online 13 February 2010)

In the title compound, C20H22N2O5, a photo-degradation product of the hypertension drug nisoldipine, the dihedral angle between the nitro­sophenyl ring and the pyridine ring is 75.7 (3)°. In the crystal structure, weak C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For general background to nisoldipine derivatives, see: Marciniec et al. (2002[Marciniec, B., Jaroszkiewicz, E. & Ogrodowczyk, M. (2002). Int. J. Pharm. 233, 207-215.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O5

  • Mr = 370.40

  • Triclinic, [P \overline 1]

  • a = 7.1831 (4) Å

  • b = 9.7819 (6) Å

  • c = 15.0245 (9) Å

  • α = 89.488 (3)°

  • β = 81.201 (3)°

  • γ = 70.625 (3)°

  • V = 983.19 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.42 × 0.28 × 0.22 mm

Data collection
  • Bruker APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.980

  • 5353 measured reflections

  • 3623 independent reflections

  • 2500 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.311

  • S = 1.01

  • 3623 reflections

  • 250 parameters

  • H-atom parameters not refined

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O1i 0.96 2.39 3.344 (5) 172
C14—H14B⋯O4ii 0.96 2.52 3.472 (5) 174
Symmetry codes: (i) x+1, y-1, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nisoldipine has been the subject of many analytical chemical investigations due to the commercial preparations for treatment of hypertension (Marciniec et al., 2002). Here, we describe the synthesis and structural characterization of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In this structure, the dihedral angle between the nitrosophenyl ring and the pyridine ring is 75.7 (3)°. Weak C—H···O hydrogen bonding between the cations and anions leads to a consolidation of the structure.

Related literature top

For general background to nisoldipine derivatives, see: Marciniec et al. (2002).

Experimental top

A solution of nisoldipine (10 mmol) in 50 ml acetone was exposed to sunlight for 5 h at ambient temperature. To the mixture was added 50 ml water, followed by filtration. The crude product was purified by flash chromatography on silica gel (1:1 ethyl acetate/hexane). Anal. C20H22N2O5: C, 64.79; H, 5.94; N, 7.56. Found: C, 64.65; H, 5.82; N, 7.50 %. Colourless blocks of (I) were recrystallised from ethanol.

Refinement top

H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.92—0.96 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CMe). In the final difference map the highest peak is 1.68 Å from atom O3 and the deepest hole is 0.65 Å from atom O2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius.
5-Methyl 3-(2-methylprop-3-yl) 2,6-dimethyl-4-(2-nitrosophenyl)pyridine-3,5-dicarboxylate top
Crystal data top
C20H22N2O5Z = 2
Mr = 370.40F(000) = 392
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1831 (4) ÅCell parameters from 1617 reflections
b = 9.7819 (6) Åθ = 2.2–24.3°
c = 15.0245 (9) ŵ = 0.09 mm1
α = 89.488 (3)°T = 296 K
β = 81.201 (3)°Block, colourless
γ = 70.625 (3)°0.42 × 0.28 × 0.22 mm
V = 983.19 (10) Å3
Data collection top
Bruker APEX II CCD
diffractometer
3623 independent reflections
Radiation source: fine-focus sealed tube2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.963, Tmax = 0.980k = 1111
5353 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.311H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.240P)2]
where P = (Fo2 + 2Fc2)/3
3623 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H22N2O5γ = 70.625 (3)°
Mr = 370.40V = 983.19 (10) Å3
Triclinic, P1Z = 2
a = 7.1831 (4) ÅMo Kα radiation
b = 9.7819 (6) ŵ = 0.09 mm1
c = 15.0245 (9) ÅT = 296 K
α = 89.488 (3)°0.42 × 0.28 × 0.22 mm
β = 81.201 (3)°
Data collection top
Bruker APEX II CCD
diffractometer
3623 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2500 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.980Rint = 0.015
5353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.311H-atom parameters not refined
S = 1.01Δρmax = 0.81 e Å3
3623 reflectionsΔρmin = 0.29 e Å3
250 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6145 (4)0.4193 (3)0.3529 (2)0.0509 (7)
C20.7137 (5)0.5026 (4)0.3888 (2)0.0619 (8)
H20.64240.58930.42150.074*
C30.9183 (5)0.4525 (4)0.3742 (2)0.0686 (10)
H30.98720.50680.39630.082*
C41.0230 (5)0.3236 (4)0.3276 (2)0.0655 (9)
H41.16200.29080.31900.079*
C50.9240 (4)0.2413 (4)0.2931 (2)0.0597 (8)
H50.99690.15380.26150.072*
C60.7173 (4)0.2887 (3)0.30541 (18)0.0471 (7)
C70.6111 (4)0.2014 (3)0.26614 (18)0.0486 (7)
C80.5973 (4)0.0750 (3)0.30544 (19)0.0493 (7)
C90.5000 (5)0.0045 (3)0.2660 (2)0.0573 (8)
C100.4346 (5)0.1561 (4)0.1519 (2)0.0624 (8)
C110.5245 (5)0.2442 (3)0.1897 (2)0.0589 (8)
C120.6737 (4)0.0337 (3)0.3918 (2)0.0527 (7)
C130.8802 (7)0.1539 (4)0.4692 (3)0.0913 (13)
H13A0.89120.07620.50430.137*
H13B1.00890.22780.45500.137*
H13C0.78780.19420.50300.137*
C140.4632 (7)0.1378 (4)0.3078 (3)0.0812 (11)
H14A0.35210.15240.28590.122*
H14B0.43380.12330.37220.122*
H14C0.58030.22140.29150.122*
C150.3426 (7)0.1944 (5)0.0689 (3)0.0908 (13)
H15A0.32020.11120.04530.136*
H15B0.43070.22460.02460.136*
H15C0.21740.27200.08310.136*
C160.5224 (5)0.3875 (4)0.1491 (2)0.0652 (9)
C170.3105 (6)0.6240 (4)0.1237 (3)0.0798 (11)
H17A0.35030.61150.05890.096*
H17B0.39220.67140.14790.096*
C180.0950 (7)0.7135 (4)0.1464 (3)0.0862 (12)
H180.06350.73000.21200.103*
C190.0422 (8)0.6433 (6)0.1188 (4)0.1166 (18)
H19A0.00700.61790.05540.175*
H19B0.17710.70920.13130.175*
H19C0.03140.55730.15190.175*
C200.0630 (9)0.8621 (5)0.1047 (4)0.1198 (18)
H20A0.10120.84890.04040.180*
H20B0.14310.90960.12870.180*
H20C0.07550.92070.11880.180*
N10.4005 (4)0.4598 (3)0.36627 (18)0.0646 (8)
N20.4221 (4)0.0355 (3)0.19043 (18)0.0635 (7)
O10.3121 (4)0.5800 (3)0.4003 (2)0.0954 (10)
O20.3373 (4)0.4833 (3)0.16329 (17)0.0769 (8)
O30.6613 (4)0.4107 (3)0.1127 (2)0.0913 (9)
O40.6244 (4)0.1108 (2)0.45823 (15)0.0714 (7)
O50.8089 (4)0.0987 (2)0.38649 (16)0.0771 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (15)0.0539 (16)0.0569 (16)0.0199 (13)0.0133 (12)0.0081 (13)
C20.069 (2)0.0572 (18)0.0674 (19)0.0264 (15)0.0207 (16)0.0038 (14)
C30.067 (2)0.082 (2)0.076 (2)0.0430 (18)0.0258 (17)0.0156 (18)
C40.0428 (16)0.083 (2)0.078 (2)0.0264 (16)0.0173 (15)0.0088 (18)
C50.0468 (16)0.0646 (19)0.0653 (18)0.0144 (14)0.0108 (14)0.0018 (14)
C60.0467 (15)0.0532 (16)0.0468 (14)0.0213 (12)0.0142 (12)0.0114 (12)
C70.0434 (14)0.0519 (16)0.0500 (15)0.0143 (12)0.0095 (12)0.0033 (12)
C80.0463 (15)0.0454 (15)0.0526 (15)0.0094 (12)0.0104 (12)0.0016 (12)
C90.0680 (19)0.0475 (16)0.0566 (17)0.0188 (14)0.0123 (14)0.0018 (13)
C100.069 (2)0.067 (2)0.0594 (18)0.0290 (16)0.0223 (15)0.0063 (15)
C110.0603 (18)0.0646 (19)0.0587 (17)0.0262 (15)0.0180 (14)0.0102 (14)
C120.0525 (16)0.0487 (16)0.0580 (17)0.0183 (13)0.0093 (13)0.0062 (13)
C130.102 (3)0.075 (2)0.086 (3)0.001 (2)0.046 (2)0.018 (2)
C140.118 (3)0.066 (2)0.078 (2)0.048 (2)0.032 (2)0.0136 (17)
C150.135 (4)0.091 (3)0.074 (2)0.057 (3)0.056 (2)0.020 (2)
C160.069 (2)0.084 (2)0.0529 (17)0.0330 (19)0.0217 (16)0.0143 (16)
C170.096 (3)0.069 (2)0.081 (2)0.030 (2)0.027 (2)0.0173 (18)
C180.094 (3)0.067 (2)0.093 (3)0.015 (2)0.030 (2)0.0032 (19)
C190.104 (4)0.104 (4)0.146 (5)0.031 (3)0.043 (3)0.018 (3)
C200.139 (5)0.073 (3)0.144 (5)0.022 (3)0.041 (4)0.015 (3)
N10.0495 (15)0.0658 (17)0.0748 (17)0.0131 (12)0.0125 (13)0.0023 (14)
N20.0762 (18)0.0596 (16)0.0632 (16)0.0274 (13)0.0253 (13)0.0026 (12)
O10.0593 (15)0.0809 (18)0.132 (2)0.0068 (13)0.0088 (16)0.0327 (17)
O20.0765 (17)0.0701 (15)0.0836 (17)0.0239 (13)0.0133 (13)0.0226 (12)
O30.0819 (18)0.114 (2)0.0919 (19)0.0493 (16)0.0209 (15)0.0420 (17)
O40.0996 (19)0.0565 (14)0.0532 (13)0.0172 (12)0.0177 (12)0.0036 (10)
O50.0776 (16)0.0629 (14)0.0695 (14)0.0105 (12)0.0246 (12)0.0006 (11)
Geometric parameters (Å, º) top
C1—C21.405 (4)C13—H13A0.9600
C1—N11.436 (4)C13—H13B0.9600
C1—C61.384 (4)C13—H13C0.9600
C2—C31.369 (5)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.368 (5)C14—H14C0.9600
C3—H30.9300C15—H15A0.9601
C4—C51.387 (5)C15—H15B0.9601
C4—H40.9300C15—H15C0.9601
C5—C61.383 (4)C16—O31.152 (4)
C5—H50.9300C16—O21.335 (4)
C6—C71.496 (4)C17—O21.458 (4)
C7—C111.386 (4)C17—C181.491 (6)
C7—C81.392 (4)C17—H17A0.9700
C8—C91.393 (4)C17—H17B0.9700
C8—C121.487 (4)C18—C191.481 (7)
C9—N21.340 (4)C18—C201.538 (6)
C9—C141.525 (4)C18—H180.9800
C10—N21.333 (4)C19—H19A0.9600
C10—C111.404 (4)C19—H19B0.9600
C10—C151.487 (4)C19—H19C0.9600
C11—C161.520 (4)C20—H20A0.9600
C12—O41.191 (4)C20—H20B0.9600
C12—O51.331 (4)C20—H20C0.9600
C13—O51.448 (4)N1—O11.210 (4)
C2—C1—N1122.6 (3)C9—C14—H14B109.5
C2—C1—C6122.0 (3)H14A—C14—H14B109.5
N1—C1—C6115.3 (2)C9—C14—H14C109.5
C3—C2—C1118.0 (3)H14A—C14—H14C109.5
C3—C2—H2121.0H14B—C14—H14C109.5
C1—C2—H2121.0C10—C15—H15A109.5
C2—C3—C4120.9 (3)C10—C15—H15B109.5
C2—C3—H3119.6H15A—C15—H15B109.5
C4—C3—H3119.5C10—C15—H15C109.4
C3—C4—C5120.7 (3)H15A—C15—H15C109.5
C3—C4—H4119.8H15B—C15—H15C109.5
C5—C4—H4119.6O3—C16—O2125.0 (3)
C6—C5—C4120.3 (3)O3—C16—C11124.8 (3)
C6—C5—H5119.9O2—C16—C11110.2 (3)
C4—C5—H5119.8O2—C17—C18107.9 (3)
C5—C6—C1118.1 (3)O2—C17—H17A110.2
C5—C6—C7120.1 (3)C18—C17—H17A110.2
C1—C6—C7121.8 (2)O2—C17—H17B110.1
C11—C7—C8118.4 (3)C18—C17—H17B110.0
C11—C7—C6120.8 (3)H17A—C17—H17B108.5
C8—C7—C6120.8 (2)C19—C18—C17113.8 (4)
C9—C8—C7119.0 (3)C19—C18—C20111.3 (4)
C9—C8—C12121.5 (3)C17—C18—C20108.8 (4)
C7—C8—C12119.3 (2)C19—C18—H18107.5
N2—C9—C8122.1 (3)C17—C18—H18107.6
N2—C9—C14114.9 (3)C20—C18—H18107.6
C8—C9—C14122.9 (3)C18—C19—H19A109.4
N2—C10—C11121.4 (3)C18—C19—H19B109.5
N2—C10—C15116.5 (3)H19A—C19—H19B109.5
C11—C10—C15122.1 (3)C18—C19—H19C109.6
C7—C11—C10119.4 (3)H19A—C19—H19C109.5
C7—C11—C16119.9 (3)H19B—C19—H19C109.5
C10—C11—C16120.7 (3)C18—C20—H20A109.4
O4—C12—O5123.1 (3)C18—C20—H20B109.3
O4—C12—C8124.3 (3)H20A—C20—H20B109.5
O5—C12—C8112.5 (2)C18—C20—H20C109.7
O5—C13—H13A109.5H20A—C20—H20C109.5
O5—C13—H13B109.5H20B—C20—H20C109.5
H13A—C13—H13B109.5O1—N1—C1114.7 (3)
O5—C13—H13C109.4C10—N2—C9119.6 (3)
H13A—C13—H13C109.5C16—O2—C17116.4 (3)
H13B—C13—H13C109.5C12—O5—C13116.7 (3)
C9—C14—H14A109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.962.393.344 (5)172
C14—H14B···O4ii0.962.523.472 (5)174
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H22N2O5
Mr370.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1831 (4), 9.7819 (6), 15.0245 (9)
α, β, γ (°)89.488 (3), 81.201 (3), 70.625 (3)
V3)983.19 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.28 × 0.22
Data collection
DiffractometerBruker APEX II CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.963, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5353, 3623, 2500
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.311, 1.01
No. of reflections3623
No. of parameters250
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.81, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.962.393.344 (5)172
C14—H14B···O4ii0.962.523.472 (5)174
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of China (Nos. 30901883, 20972189, 30600163), the Natural Science Foundation of Shannxi Province (No. 2008C274) and the Administration Traditional Chinese Medicine Foundation of Shannxi Province (No. jc46, zy16) for financial support.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMarciniec, B., Jaroszkiewicz, E. & Ogrodowczyk, M. (2002). Int. J. Pharm. 233, 207–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds