organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o521-o522

2-Chloro-6,6-di­methyl-5,6-di­hydro­indazolo[2,3-c]quinazoline

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041250 Rio de Janeiro, RJ, Brazil, bUniversidade Federal do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Quıímica, Cidade Universitária, 21949-900 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 January 2010; accepted 30 January 2010; online 6 February 2010)

Two independent but virtually identical mol­ecules comprise the asymmetric unit of the title compound, C16H14ClN3. The mol­ecules have a slightly curved shape owing to puckering in the six-membered C4N2 ring; the respective dihedral angles formed between the benzene rings are 12.64 (7) and 11.72 (7)°. In the crystal, layers sustained by a combination of N—H⋯N hydrogen bonding as well as C—H⋯N and C—H⋯π contacts are formed; these stack along [011] and are connected by further C—H⋯π contacts.

Related literature

For background to the synthesis and biological activity of the title compound, see: Rousselet et al. (1993[Rousselet, G., Capdevielle, P. & Maumy, M. (1993). Tetrahedron Lett. 34, 6395-6398.]); Ferreira et al. (2007[Ferreira, S. P., Costa, M. S., Boechat, N., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B. & Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388-1395.]). For additional geometric analysis, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN3

  • Mr = 283.75

  • Triclinic, [P \overline 1]

  • a = 9.8636 (2) Å

  • b = 10.7971 (2) Å

  • c = 13.2387 (3) Å

  • α = 93.483 (1)°

  • β = 100.391 (1)°

  • γ = 104.419 (1)°

  • V = 1334.81 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 120 K

  • 0.55 × 0.25 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 1.000

  • 27218 measured reflections

  • 6102 independent reflections

  • 5108 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.02

  • 6102 reflections

  • 371 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2,N3,C10,C11,C16, N5,N6,C26,C27,C32, C1–C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯N6 0.90 (2) 2.32 (2) 3.2090 (17) 173 (2)
N4—H4n⋯N3i 0.86 (2) 2.39 (2) 3.2384 (17) 168 (2)
C9—H9b⋯N4ii 0.98 2.58 3.537 (2) 164
C25—H25b⋯N1 0.98 2.61 3.545 (2) 160
C24—H24c⋯Cg1i 0.98 2.90 3.8431 (17) 162
C8—H8c⋯Cg2 0.98 2.97 3.8929 (17) 157
C18—H18⋯Cg3iii 0.95 2.92 3.6630 (15) 135
C14—H14⋯Cg4iv 0.95 2.95 3.8062 (16) 151
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Referring to Fig. 1, amidines, 2 (e.g., X = Y = H; X = H, Y = 4-Cl, 4-Br, 4-F, 4-NO2, 4-CF3, 4-CN, 4-CH3, 4-OMe, 2-Me, 3-OCF3; X, Y = 2,6-F) can be formed from reaction of anilines, 1, with acetonitrile and gaseous hydrogen chloride (Rousselet et al., 1993; Ferreira et al., 2007). From, the N-aryl-amidines, 2, on successively reactions with 2-bromomalonaldehyde and N,N-diethylaminosulfur trifluoride (DAST), can be formed 1-(substituted-phenyl)-5-(difluoromethyl)-2-methyl-1H-imidazoles, potential anti-leishmanial agents (Ferreira et al., 2007). Unexpectedly, the reaction of aniline 3 with acetonitrile and gaseous hydrogen chloride, followed by a workup using Me2CO, not only produced the amidine, 4, but also the title compound, (5 in Fig. 1 but hereafter, I). Compound (I) had been formed by a condensation reaction between the acetone and the starting material 3. The molecular and crystal structures of (I) are now reported.

Two independent but similar molecules, molecule a (Fig. 1) and molecule b (Fig. 2), comprise the crystallographic asymmetric unit in (I). The r.m.s. values for bond distances and angles are 0.0028 Å and 0.325 °, respectively. The six-membered C4N2 ring is puckered as seen in the values of the puckering amplitude Q = 0.3609 (14) Å, θ = 63.3 (2) °, and ϕ = 324.4 (3) ° (Cremer & Pople, 1975); the respective values for the equivalent ring in molecule b are 0.3841 (14) Å, 63.2 (2) °, and 323.6 (2) °. This puckering results in a slightly folded conformation for the molecule, as indicated by the dihedral angle formed between the peripheral benzene rings of 12.64 (7) ° [11.72 (7) ° for molecule b].

Supramolecular arrays are found in the crystal structure of (I) mediated by N–H···N hydrogen bonding and sustained by C–H···N as well as C–H···π contacts, the latter involving hydrogen atoms from the methyl-C8 and -C24 groups and the ring centroids of the five-membered rings, Table 1 and Fig. 3. Layers stack along [0 1 1] as illustrated in Fig. 4, being associated via C–H···π contacts involving aromatic-H atoms and benzene rings.

Related literature top

For background to the synthesis and biological activity of the title compound, see: Rousselet et al. (1993); Ferreira et al. (2007). For additional geometric analysis, see Cremer & Pople (1975).

Experimental top

Referring to Fig. 1, to a stirred solution of amine, 3, (10.75 mmol) in acetonitrile (43 ml) was bubbled hydrogen chloride gas. A precipitate was formed immediately. The resulting suspension was refluxed for 14 hours until homogeneous. The reaction mixture was evaporated at reduced pressure and the residue partitioned between CH2Cl2 and saturated aq. NaHCO3. The aqueous layer was washed with CH2Cl2, and the combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure. To the solid residue, a mixture of amidine 4 and the starting aniline, 3, was added acetone (50 ml) and the mixture stirred for 30 min. and filtered. The filtrate was evaporated under reduced pressure to give 4 in 70% yield. Recrystallization from acetone of the insoluble residue from the filtration gave pale yellow blocks of (I); 5 in Fig. 1, in 15% yield. M. pt. 483-485 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the synthesis of (I).
[Figure 2] Fig. 2. The molecular structure of the first independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. The molecular structure of the second independent molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. A view of the supramolecular array in (I) held together by N–H···N hydrogen bonds (blue dashed bonds), as well as C–H···N (orange dashed lines) and C–H···π (not shown) interactions. Colour code: Cl, cyan; N, blue; C, grey; and H, green.
[Figure 5] Fig. 5. View of the stacking of layers in (I) in projection down the a axis. Colour code: Cl, cyan; N, blue; C, grey; and H, green.
2-Chloro-6,6-dimethyl-5,6-dihydroindazolo[2,3-c]quinazoline top
Crystal data top
C16H14ClN3Z = 4
Mr = 283.75F(000) = 592
Triclinic, P1Dx = 1.412 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8636 (2) ÅCell parameters from 5954 reflections
b = 10.7971 (2) Åθ = 2.9–27.5°
c = 13.2387 (3) ŵ = 0.28 mm1
α = 93.483 (1)°T = 120 K
β = 100.391 (1)°Block, pale-yellow
γ = 104.419 (1)°0.55 × 0.25 × 0.15 mm
V = 1334.81 (5) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
6102 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode5108 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1414
Tmin = 0.885, Tmax = 1.000l = 1717
27218 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.5871P]
where P = (Fo2 + 2Fc2)/3
6102 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H14ClN3γ = 104.419 (1)°
Mr = 283.75V = 1334.81 (5) Å3
Triclinic, P1Z = 4
a = 9.8636 (2) ÅMo Kα radiation
b = 10.7971 (2) ŵ = 0.28 mm1
c = 13.2387 (3) ÅT = 120 K
α = 93.483 (1)°0.55 × 0.25 × 0.15 mm
β = 100.391 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
6102 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
5108 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 1.000Rint = 0.037
27218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
6102 reflectionsΔρmin = 0.37 e Å3
371 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33159 (4)0.34794 (3)0.46107 (3)0.02533 (10)
N10.47189 (12)0.14829 (11)0.28749 (9)0.0170 (2)
H1N0.5189 (18)0.1492 (16)0.2355 (13)0.020*
N20.30560 (12)0.22108 (10)0.36420 (8)0.0146 (2)
N30.25126 (12)0.31785 (11)0.39366 (9)0.0166 (2)
C10.37097 (15)0.20111 (13)0.41036 (10)0.0178 (3)
C20.46556 (15)0.18303 (13)0.34342 (11)0.0191 (3)
H20.50940.24880.32750.023*
C30.49562 (14)0.06863 (13)0.30000 (11)0.0180 (3)
H30.55920.05650.25320.022*
C40.43335 (14)0.02947 (13)0.32429 (10)0.0153 (3)
C50.33861 (14)0.01066 (13)0.39313 (10)0.0149 (3)
C60.30674 (14)0.10637 (13)0.43533 (10)0.0166 (3)
H60.24150.12070.48080.020*
C70.37046 (14)0.22740 (13)0.27162 (10)0.0160 (3)
C80.45339 (16)0.36485 (14)0.26594 (12)0.0215 (3)
H8A0.52340.39690.33060.032*
H8B0.38710.41930.25550.032*
H8C0.50320.36700.20810.032*
C90.25205 (16)0.17480 (15)0.17637 (11)0.0231 (3)
H9A0.29390.17620.11460.035*
H9B0.18450.22820.17030.035*
H9C0.20170.08620.18310.035*
C100.28291 (14)0.11864 (13)0.41894 (10)0.0148 (3)
C110.20930 (14)0.15069 (13)0.49425 (10)0.0150 (3)
C120.15553 (15)0.09112 (13)0.57641 (10)0.0177 (3)
H120.16430.00770.58970.021*
C130.09056 (15)0.15635 (14)0.63631 (11)0.0211 (3)
H130.05350.11710.69150.025*
C140.07742 (16)0.28172 (14)0.61761 (11)0.0219 (3)
H140.03220.32450.66080.026*
C150.12848 (15)0.34197 (13)0.53880 (11)0.0194 (3)
H150.11990.42590.52710.023*
C160.19440 (14)0.27539 (13)0.47525 (10)0.0160 (3)
Cl21.01515 (4)0.86179 (3)0.04959 (3)0.02812 (11)
N41.01094 (12)0.36108 (11)0.20762 (9)0.0162 (2)
H4N1.0824 (18)0.3620 (16)0.2564 (13)0.019*
N50.76776 (12)0.28013 (10)0.13350 (8)0.0147 (2)
N60.64868 (12)0.18074 (11)0.10529 (9)0.0159 (2)
C171.01399 (15)0.71382 (13)0.09521 (11)0.0182 (3)
C181.13622 (15)0.69989 (13)0.15913 (11)0.0186 (3)
H181.21990.76970.17620.022*
C191.13493 (14)0.58330 (13)0.19782 (10)0.0171 (3)
H191.21830.57330.24150.020*
C201.01243 (14)0.48057 (13)0.17320 (10)0.0146 (3)
C210.88979 (14)0.49500 (12)0.10646 (10)0.0143 (3)
C220.89169 (15)0.61293 (13)0.06827 (10)0.0166 (3)
H220.80930.62390.02400.020*
C230.87707 (14)0.27850 (13)0.22571 (10)0.0157 (3)
C240.89323 (16)0.14258 (13)0.23258 (12)0.0209 (3)
H24A0.91290.11020.16750.031*
H24B0.80470.08650.24530.031*
H24C0.97250.14350.28940.031*
C250.83271 (15)0.33020 (15)0.32098 (11)0.0215 (3)
H25A0.90600.33290.38240.032*
H25B0.74140.27380.32880.032*
H25C0.82220.41720.31290.032*
C260.76750 (14)0.38327 (12)0.08024 (10)0.0142 (3)
C270.63765 (14)0.34888 (12)0.00739 (10)0.0146 (3)
C280.57034 (15)0.40825 (13)0.07201 (10)0.0174 (3)
H280.61550.49200.08630.021*
C290.43847 (15)0.34197 (14)0.12786 (11)0.0200 (3)
H290.39110.38130.18060.024*
C300.37114 (15)0.21577 (14)0.10858 (11)0.0201 (3)
H300.27950.17270.14860.024*
C310.43480 (15)0.15426 (13)0.03367 (10)0.0175 (3)
H310.39000.06900.02250.021*
C320.56925 (14)0.22232 (13)0.02623 (10)0.0155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (2)0.01712 (17)0.02142 (18)0.01136 (15)0.00696 (15)0.00566 (13)
N10.0154 (6)0.0180 (6)0.0202 (6)0.0058 (5)0.0075 (5)0.0043 (5)
N20.0157 (5)0.0143 (5)0.0144 (5)0.0050 (4)0.0034 (4)0.0015 (4)
N30.0191 (6)0.0153 (6)0.0165 (6)0.0068 (5)0.0041 (5)0.0004 (4)
C10.0207 (7)0.0149 (6)0.0161 (6)0.0053 (5)0.0011 (5)0.0010 (5)
C20.0188 (7)0.0192 (7)0.0193 (7)0.0090 (5)0.0001 (5)0.0019 (5)
C30.0149 (6)0.0208 (7)0.0183 (7)0.0049 (5)0.0041 (5)0.0006 (5)
C40.0130 (6)0.0163 (6)0.0150 (6)0.0027 (5)0.0007 (5)0.0008 (5)
C50.0143 (6)0.0156 (6)0.0146 (6)0.0053 (5)0.0012 (5)0.0005 (5)
C60.0172 (6)0.0181 (7)0.0145 (6)0.0050 (5)0.0022 (5)0.0020 (5)
C70.0161 (6)0.0191 (7)0.0146 (6)0.0060 (5)0.0049 (5)0.0036 (5)
C80.0244 (7)0.0202 (7)0.0233 (7)0.0074 (6)0.0093 (6)0.0092 (6)
C90.0197 (7)0.0350 (8)0.0152 (7)0.0100 (6)0.0023 (6)0.0010 (6)
C100.0132 (6)0.0155 (6)0.0150 (6)0.0031 (5)0.0016 (5)0.0022 (5)
C110.0129 (6)0.0169 (6)0.0144 (6)0.0042 (5)0.0009 (5)0.0006 (5)
C120.0176 (7)0.0190 (7)0.0168 (7)0.0052 (5)0.0032 (5)0.0040 (5)
C130.0199 (7)0.0276 (8)0.0161 (7)0.0052 (6)0.0055 (5)0.0038 (6)
C140.0223 (7)0.0258 (8)0.0189 (7)0.0093 (6)0.0054 (6)0.0033 (6)
C150.0229 (7)0.0175 (7)0.0186 (7)0.0085 (6)0.0030 (6)0.0015 (5)
C160.0148 (6)0.0170 (7)0.0149 (6)0.0040 (5)0.0002 (5)0.0005 (5)
Cl20.0325 (2)0.01460 (17)0.0300 (2)0.00067 (14)0.00427 (16)0.00690 (14)
N40.0123 (5)0.0167 (6)0.0195 (6)0.0039 (4)0.0018 (5)0.0055 (5)
N50.0147 (5)0.0141 (5)0.0146 (5)0.0028 (4)0.0029 (4)0.0019 (4)
N60.0158 (5)0.0138 (5)0.0163 (6)0.0007 (4)0.0030 (4)0.0004 (4)
C170.0221 (7)0.0139 (6)0.0180 (7)0.0032 (5)0.0044 (5)0.0026 (5)
C180.0163 (7)0.0179 (7)0.0190 (7)0.0001 (5)0.0033 (5)0.0002 (5)
C190.0146 (6)0.0196 (7)0.0169 (7)0.0049 (5)0.0026 (5)0.0016 (5)
C200.0167 (6)0.0157 (6)0.0132 (6)0.0063 (5)0.0049 (5)0.0014 (5)
C210.0145 (6)0.0143 (6)0.0137 (6)0.0026 (5)0.0038 (5)0.0007 (5)
C220.0174 (7)0.0173 (7)0.0149 (6)0.0045 (5)0.0023 (5)0.0022 (5)
C230.0143 (6)0.0167 (6)0.0153 (6)0.0034 (5)0.0017 (5)0.0034 (5)
C240.0209 (7)0.0175 (7)0.0244 (7)0.0050 (6)0.0030 (6)0.0080 (6)
C250.0176 (7)0.0295 (8)0.0157 (7)0.0046 (6)0.0020 (5)0.0004 (6)
C260.0159 (6)0.0143 (6)0.0138 (6)0.0051 (5)0.0049 (5)0.0024 (5)
C270.0146 (6)0.0157 (6)0.0141 (6)0.0043 (5)0.0044 (5)0.0010 (5)
C280.0193 (7)0.0176 (7)0.0163 (7)0.0060 (5)0.0042 (5)0.0021 (5)
C290.0211 (7)0.0247 (7)0.0150 (7)0.0096 (6)0.0014 (5)0.0004 (5)
C300.0148 (6)0.0242 (7)0.0182 (7)0.0034 (5)0.0001 (5)0.0046 (6)
C310.0179 (7)0.0158 (6)0.0167 (7)0.0012 (5)0.0047 (5)0.0033 (5)
C320.0169 (6)0.0160 (6)0.0143 (6)0.0045 (5)0.0052 (5)0.0005 (5)
Geometric parameters (Å, º) top
Cl1—C11.7411 (14)Cl2—C171.7401 (14)
N1—C41.3884 (17)N4—C201.3917 (17)
N1—C71.4649 (17)N4—C231.4662 (17)
N1—H1N0.896 (18)N4—H4N0.863 (17)
N2—C101.3532 (17)N5—C261.3540 (17)
N2—N31.3550 (15)N5—N61.3551 (15)
N2—C71.4791 (17)N5—C231.4800 (17)
N3—C161.3573 (18)N6—C321.3591 (17)
C1—C61.3835 (19)C17—C221.3828 (19)
C1—C21.387 (2)C17—C181.389 (2)
C2—C31.382 (2)C18—C191.3855 (19)
C2—H20.9500C18—H180.9500
C3—C41.3987 (19)C19—C201.3939 (19)
C3—H30.9500C19—H190.9500
C4—C51.4072 (19)C20—C211.4118 (18)
C5—C61.3995 (19)C21—C221.3954 (18)
C5—C101.4548 (18)C21—C261.4506 (18)
C6—H60.9500C22—H220.9500
C7—C81.5194 (19)C23—C241.5214 (18)
C7—C91.5258 (19)C23—C251.5261 (19)
C8—H8A0.9800C24—H24A0.9800
C8—H8B0.9800C24—H24B0.9800
C8—H8C0.9800C24—H24C0.9800
C9—H9A0.9800C25—H25A0.9800
C9—H9B0.9800C25—H25B0.9800
C9—H9C0.9800C25—H25C0.9800
C10—C111.4090 (19)C26—C271.4080 (18)
C11—C121.4147 (19)C27—C281.4137 (19)
C11—C161.4227 (18)C27—C321.4240 (18)
C12—C131.370 (2)C28—C291.370 (2)
C12—H120.9500C28—H280.9500
C13—C141.424 (2)C29—C301.420 (2)
C13—H130.9500C29—H290.9500
C14—C151.369 (2)C30—C311.372 (2)
C14—H140.9500C30—H300.9500
C15—C161.4156 (19)C31—C321.4114 (19)
C15—H150.9500C31—H310.9500
C4—N1—C7120.26 (11)C20—N4—C23119.47 (11)
C4—N1—H1N114.6 (11)C20—N4—H4N114.1 (11)
C7—N1—H1N111.3 (11)C23—N4—H4N111.7 (11)
C10—N2—N3115.05 (11)C26—N5—N6114.95 (11)
C10—N2—C7124.91 (11)C26—N5—C23124.25 (11)
N3—N2—C7119.74 (11)N6—N5—C23120.24 (10)
N2—N3—C16103.00 (11)N5—N6—C32103.14 (10)
C6—C1—C2121.31 (13)C22—C17—C18121.23 (13)
C6—C1—Cl1120.29 (11)C22—C17—Cl2119.69 (11)
C2—C1—Cl1118.39 (10)C18—C17—Cl2119.08 (11)
C3—C2—C1119.49 (13)C19—C18—C17119.40 (13)
C3—C2—H2120.3C19—C18—H18120.3
C1—C2—H2120.3C17—C18—H18120.3
C2—C3—C4120.61 (13)C18—C19—C20120.59 (13)
C2—C3—H3119.7C18—C19—H19119.7
C4—C3—H3119.7C20—C19—H19119.7
N1—C4—C3120.82 (12)N4—C20—C19121.43 (12)
N1—C4—C5119.55 (12)N4—C20—C21118.93 (12)
C3—C4—C5119.45 (12)C19—C20—C21119.51 (12)
C6—C5—C4119.58 (12)C22—C21—C20119.53 (12)
C6—C5—C10123.71 (12)C22—C21—C26123.40 (12)
C4—C5—C10116.68 (12)C20—C21—C26117.06 (12)
C1—C6—C5119.54 (13)C17—C22—C21119.71 (13)
C1—C6—H6120.2C17—C22—H22120.1
C5—C6—H6120.2C21—C22—H22120.1
N1—C7—N2105.41 (10)N4—C23—N5105.27 (10)
N1—C7—C8108.36 (11)N4—C23—C24108.66 (11)
N2—C7—C8109.95 (11)N5—C23—C24109.72 (11)
N1—C7—C9112.12 (11)N4—C23—C25112.27 (11)
N2—C7—C9108.61 (11)N5—C23—C25108.52 (11)
C8—C7—C9112.17 (12)C24—C23—C25112.16 (12)
C7—C8—H8A109.5C23—C24—H24A109.5
C7—C8—H8B109.5C23—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C7—C8—H8C109.5C23—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C7—C9—H9A109.5C23—C25—H25A109.5
C7—C9—H9B109.5C23—C25—H25B109.5
H9A—C9—H9B109.5H25A—C25—H25B109.5
C7—C9—H9C109.5C23—C25—H25C109.5
H9A—C9—H9C109.5H25A—C25—H25C109.5
H9B—C9—H9C109.5H25B—C25—H25C109.5
N2—C10—C11105.47 (11)N5—C26—C27105.54 (11)
N2—C10—C5118.79 (12)N5—C26—C21118.71 (12)
C11—C10—C5135.69 (13)C27—C26—C21135.74 (12)
C10—C11—C12135.86 (13)C26—C27—C28135.70 (13)
C10—C11—C16104.30 (12)C26—C27—C32104.40 (11)
C12—C11—C16119.84 (12)C28—C27—C32119.90 (12)
C13—C12—C11118.54 (13)C29—C28—C27118.35 (13)
C13—C12—H12120.7C29—C28—H28120.8
C11—C12—H12120.7C27—C28—H28120.8
C12—C13—C14121.35 (13)C28—C29—C30121.35 (13)
C12—C13—H13119.3C28—C29—H29119.3
C14—C13—H13119.3C30—C29—H29119.3
C15—C14—C13121.50 (13)C31—C30—C29121.81 (13)
C15—C14—H14119.3C31—C30—H30119.1
C13—C14—H14119.3C29—C30—H30119.1
C14—C15—C16117.97 (13)C30—C31—C32117.58 (13)
C14—C15—H15121.0C30—C31—H31121.2
C16—C15—H15121.0C32—C31—H31121.2
N3—C16—C15127.06 (13)N6—C32—C31127.08 (12)
N3—C16—C11112.13 (12)N6—C32—C27111.93 (12)
C15—C16—C11120.80 (13)C31—C32—C27120.99 (12)
C10—N2—N3—C162.18 (14)C26—N5—N6—C322.02 (14)
C7—N2—N3—C16176.26 (11)C23—N5—N6—C32173.79 (11)
C6—C1—C2—C30.5 (2)C22—C17—C18—C190.9 (2)
Cl1—C1—C2—C3178.29 (10)Cl2—C17—C18—C19178.41 (10)
C1—C2—C3—C41.0 (2)C17—C18—C19—C200.0 (2)
C7—N1—C4—C3152.54 (13)C23—N4—C20—C19150.56 (13)
C7—N1—C4—C532.29 (18)C23—N4—C20—C2133.59 (17)
C2—C3—C4—N1174.78 (12)C18—C19—C20—N4177.17 (12)
C2—C3—C4—C50.4 (2)C18—C19—C20—C211.4 (2)
N1—C4—C5—C6175.99 (12)N4—C20—C21—C22177.61 (12)
C3—C4—C5—C60.75 (19)C19—C20—C21—C221.68 (19)
N1—C4—C5—C101.91 (18)N4—C20—C21—C261.62 (18)
C3—C4—C5—C10177.16 (12)C19—C20—C21—C26177.55 (12)
C2—C1—C6—C50.6 (2)C18—C17—C22—C210.6 (2)
Cl1—C1—C6—C5179.41 (10)Cl2—C17—C22—C21178.75 (10)
C4—C5—C6—C11.3 (2)C20—C21—C22—C170.7 (2)
C10—C5—C6—C1176.50 (12)C26—C21—C22—C17178.46 (13)
C4—N1—C7—N244.02 (15)C20—N4—C23—N546.66 (15)
C4—N1—C7—C8161.69 (12)C20—N4—C23—C24164.13 (12)
C4—N1—C7—C973.97 (16)C20—N4—C23—C2571.22 (15)
C10—N2—C7—N131.81 (16)C26—N5—C23—N434.21 (16)
N3—N2—C7—N1154.73 (11)N6—N5—C23—N4154.83 (11)
C10—N2—C7—C8148.40 (13)C26—N5—C23—C24150.96 (12)
N3—N2—C7—C838.14 (16)N6—N5—C23—C2438.07 (16)
C10—N2—C7—C988.52 (15)C26—N5—C23—C2586.17 (15)
N3—N2—C7—C984.94 (14)N6—N5—C23—C2584.79 (14)
N3—N2—C10—C111.57 (15)N6—N5—C26—C271.68 (15)
C7—N2—C10—C11175.31 (11)C23—N5—C26—C27173.07 (11)
N3—N2—C10—C5179.50 (11)N6—N5—C26—C21179.01 (11)
C7—N2—C10—C56.77 (19)C23—N5—C26—C217.62 (19)
C6—C5—C10—N2171.72 (12)C22—C21—C26—N5169.74 (12)
C4—C5—C10—N210.47 (18)C20—C21—C26—N511.07 (18)
C6—C5—C10—C1111.1 (2)C22—C21—C26—C2711.2 (2)
C4—C5—C10—C11166.67 (14)C20—C21—C26—C27167.98 (14)
N2—C10—C11—C12178.65 (15)N5—C26—C27—C28178.92 (15)
C5—C10—C11—C121.3 (3)C21—C26—C27—C280.2 (3)
N2—C10—C11—C160.26 (14)N5—C26—C27—C320.58 (14)
C5—C10—C11—C16177.66 (14)C21—C26—C27—C32179.71 (14)
C10—C11—C12—C13178.45 (15)C26—C27—C28—C29179.44 (14)
C16—C11—C12—C130.33 (19)C32—C27—C28—C291.13 (19)
C11—C12—C13—C140.4 (2)C27—C28—C29—C301.2 (2)
C12—C13—C14—C150.3 (2)C28—C29—C30—C310.2 (2)
C13—C14—C15—C160.5 (2)C29—C30—C31—C321.6 (2)
N2—N3—C16—C15177.09 (13)N5—N6—C32—C31178.35 (13)
N2—N3—C16—C111.92 (14)N5—N6—C32—C271.56 (14)
C14—C15—C16—N3179.89 (13)C30—C31—C32—N6178.42 (13)
C14—C15—C16—C111.2 (2)C30—C31—C32—C271.69 (19)
C10—C11—C16—N31.08 (15)C26—C27—C32—N60.64 (15)
C12—C11—C16—N3179.79 (12)C28—C27—C32—N6179.77 (12)
C10—C11—C16—C15178.01 (12)C26—C27—C32—C31179.27 (12)
C12—C11—C16—C151.12 (19)C28—C27—C32—C310.32 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2,N3,C10,C11,C16, N5,N6,C26,C27,C32, C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N60.90 (2)2.32 (2)3.2090 (17)173 (2)
N4—H4n···N3i0.86 (2)2.39 (2)3.2384 (17)168 (2)
C9—H9b···N4ii0.982.583.537 (2)164
C25—H25b···N10.982.613.545 (2)160
C24—H24c···Cg1i0.982.903.8431 (17)162
C8—H8c···Cg20.982.973.8929 (17)157
C18—H18···Cg3iii0.952.923.6630 (15)135
C14—H14···Cg4iv0.952.953.8062 (16)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14ClN3
Mr283.75
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.8636 (2), 10.7971 (2), 13.2387 (3)
α, β, γ (°)93.483 (1), 100.391 (1), 104.419 (1)
V3)1334.81 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.55 × 0.25 × 0.15
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.885, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27218, 6102, 5108
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.02
No. of reflections6102
No. of parameters371
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.37

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), PLATON (Spek, 2003) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N2,N3,C10,C11,C16, N5,N6,C26,C27,C32, C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1n···N60.896 (18)2.319 (18)3.2090 (17)172.5 (15)
N4—H4n···N3i0.863 (18)2.390 (17)3.2384 (17)167.5 (15)
C9—H9b···N4ii0.982.583.537 (2)164
C25—H25b···N10.982.613.545 (2)160
C24—H24c···Cg1i0.982.903.8431 (17)162
C8—H8c···Cg20.982.973.8929 (17)157
C18—H18···Cg3iii0.952.923.6630 (15)135
C14—H14···Cg4iv0.952.953.8062 (16)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, S. P., Costa, M. S., Boechat, N., Bezerra, R. J. S., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B. & Ferreira, V. F. (2007). Eur. J. Med. Chem. 42, 1388–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRousselet, G., Capdevielle, P. & Maumy, M. (1993). Tetrahedron Lett. 34, 6395–6398.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o521-o522
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds