organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­ethyl­anilinium perchlorate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 4 February 2010; accepted 5 February 2010; online 13 February 2010)

The asymmetric unit of the title mol­ecular salt, C10H16N+·ClO4, contains two cations and two anions. The atoms of one of the ethyl side chains of one of the cations are disordered over two sets of sites in a 0.531 (13):0.469 (13) ratio. In the crystal, the components are linked by N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds and weaker C—H⋯O inter­actions, such that the organic cations alternate with the perchlorate anions, forming ribbons in the a-axis direction.

Related literature

For background to the physical properties and potential applications of mol­ecular salts, see: Czarnecki et al. (1994[Czarnecki, P., Nawrocik, W., Pajak, Z. & Wasicki, J. (1994). Phys. Rev. B, 49, 1511-1512.]); Mylrajan & Srinivasan (1991[Mylrajan, M. & Srinivasan, T. K. K. (1991). J. Raman Spectrosc. 22, 53-55.]); Toumi Akriche et al. (2010[Toumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.]); Xiao et al. (2005[Xiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct. 738, 217-225.]). For the graph-set notation of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·ClO4

  • Mr = 249.69

  • Monoclinic, P 21 /c

  • a = 15.105 (3) Å

  • b = 21.192 (5) Å

  • c = 7.718 (6) Å

  • β = 98.10 (3)°

  • V = 2446 (2) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 15750 measured reflections

  • 11941 independent reflections

  • 2954 reflections with I > 2σ(I)

  • Rint = 0.052

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.278

  • S = 0.91

  • 11941 reflections

  • 304 parameters

  • H-atom parameters not refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6 0.89 2.41 3.029 (4) 127
N1—H1B⋯O4 0.89 2.27 3.043 (5) 146
N1—H1B⋯O2i 0.89 2.48 2.889 (4) 109
N1—H1C⋯O3ii 0.89 2.10 2.935 (4) 157
N1—H1C⋯O2i 0.89 2.58 2.889 (4) 101
N2—H2A⋯O1 0.89 2.17 2.971 (4) 149
N2—H2B⋯O5 0.89 2.39 2.875 (4) 114
N2—H2B⋯O7iii 0.89 2.24 2.991 (4) 141
N2—H2C⋯O7iv 0.89 2.03 2.805 (3) 144
C3—H3⋯O3v 0.93 2.60 3.321 (5) 134
C13—H13⋯O8vi 0.93 2.49 3.418 (6) 172
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A special attention is focused on the synthesis of hybrid class of inorganic-organic materials because of their interesting architectures and wide variety of physical properties. Organic substructure of these compounds is usually responsible for their molecular hyperpolarizability, electric permittivity and spontaneous polarization. The inorganic part determines thermal and mechanical stability of the crystals. The combination of these various features attributed to both organic and inorganic substructures may lead to interesting materials (Xiao et al., 2005). In particular, the association of the perchlorate anions to organic molecules could lead to materials having phase transitions, non-symmetric structures, characteristic H-bonds (Czarnecki et al., 1994; Mylrajan & Srinivasan, 1991). Among the crystals comprising perchlorate anions, the most interesting are non-centrosymmetric, due to non linear optical(ONL) properties. A pronounced second harmonic generation was found in L-leucinium perchlorate (SHG efficiency d eff= 0.44 x d eff KDP). In this paper, we report single-crystal X-ray study of 2,6-diethylanilinium perchlorate (I). Crystal structure of this latter is depicted in the figure 1. The asymmetric unit, built of two 2,6-diethylanilinium cations and two perchlorate anions, has the geometrical configuration shown in the figure 2. These four components establish between them H-bonds to form a tetra-membered ring. This ring form two slightly corrugated ribbons parallel to the a direction at y = 1/4 and 3/4. Each ribbon is built of an alternance of both inorganic and organic entities.

The first Cl(1)O4- is surrounded by three N(1)H3+cations, to build a ribbon extended in the a direction, and generating R24(8) graph-set motifs.Whereas the second Cl(2)O4-, surrounded by two N(2)H3+cations, leads to R24(10) graph-set motifs which form another ribbon extended in the same direction. Both parallel ribbons are attached together by N—H···O hydrogen bonds. The organic molecules are anchored on these ribbons so that to leave spacious channels (13.9 Å x 3.3 Å) parallel to the a axis. The Cl—O distances indicate rather slight distortion of the two perchlorate anions from the tetrahedral symmetry. The shortest Cl—O bond equals to 1.384 (3) Å, whereas the longest one to 1.444 (3) Å, the angles vary from 105.6 (2)° to 111.2 (2)° that are standard values for perchlorate ions (Toumi Akriche, S. et al. 2010). In this organisation, the components display different interactions (electrostatic, H-bonds, Van derWalls) to keep the three-dimensional network stability.

Related literature top

For background to the physical properties and potential applications of molecular salts, see: Czarnecki et al. (1994); Mylrajan & Srinivasan (1991); Toumi Akriche et al. (2010); Xiao et al. (2005). For the graph-set notation of hydrogen-bond networks, see: Bernstein et al. (1995).

Experimental top

An ethalonic 2,6-diethylaniline solution (5 mmol, in 5 ml) was added to an aqueous perchloric acid solution (0.5 M, 10 ml) at room temperature (293 K). Slow evaporation of the obtained mixture led to the formation of small crystals of the title compound. These were recrystallised from a mixture of water / ethanol (80% / 20%) to yield colourless blocks of (I).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97Å, N—H = 0.89Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the packing of (I) along the a axis.
[Figure 2] Fig. 2. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
2,6-Diethylanilinium perchlorate top
Crystal data top
C10H16N+·ClO4F(000) = 1056
Mr = 249.69Dx = 1.356 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 15.105 (3) Åθ = 9–11°
b = 21.192 (5) ŵ = 0.17 mm1
c = 7.718 (6) ÅT = 293 K
β = 98.10 (3)°Block, colourless
V = 2446 (2) Å30.50 × 0.40 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.052
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 255
non–profiled ω scansk = 350
15750 measured reflectionsl = 1212
11941 independent reflections2 standard reflections every 120 min
2954 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.278H-atom parameters not refined
S = 0.91 w = 1/[σ2(Fo2) + (0.1095P)2 + ]
where P = (Fo2 + 2Fc2)/3
11941 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C10H16N+·ClO4V = 2446 (2) Å3
Mr = 249.69Z = 8
Monoclinic, P21/cAg Kα radiation, λ = 0.56085 Å
a = 15.105 (3) ŵ = 0.17 mm1
b = 21.192 (5) ÅT = 293 K
c = 7.718 (6) Å0.50 × 0.40 × 0.20 mm
β = 98.10 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.052
15750 measured reflections2 standard reflections every 120 min
11941 independent reflections intensity decay: 5%
2954 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.278H-atom parameters not refined
S = 0.91Δρmax = 0.36 e Å3
11941 reflectionsΔρmin = 0.36 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C7A0.0545 (10)0.6898 (8)0.139 (3)0.094 (7)0.469 (13)
H7A10.00240.70600.19600.112*0.469 (13)
H7A20.06000.70120.01650.112*0.469 (13)
C7B0.0813 (12)0.6774 (8)0.089 (2)0.106 (6)0.531 (13)
H7B10.02800.70300.11800.127*0.531 (13)
H7B20.08850.67260.03730.127*0.531 (13)
C8A0.1146 (10)0.7157 (9)0.204 (3)0.126 (4)0.469 (13)
H8A10.11240.76040.18390.188*0.469 (13)
H8A20.10720.70760.32730.188*0.469 (13)
H8A30.17130.69950.15040.188*0.469 (13)
C8B0.1498 (9)0.7177 (8)0.116 (3)0.126 (4)0.531 (13)
H8B10.14290.75700.05710.188*0.531 (13)
H8B20.14810.72510.23870.188*0.531 (13)
H8B30.20610.69900.06950.188*0.531 (13)
N20.37636 (18)0.68014 (13)0.7366 (3)0.0541 (7)
H2A0.33120.65310.71210.081*
H2B0.37540.70780.64970.081*
H2C0.37090.70050.83550.081*
O30.1026 (2)0.65755 (15)0.8694 (4)0.1012 (11)
O10.18825 (19)0.63681 (13)0.6498 (4)0.0866 (9)
O70.3499 (2)0.68975 (12)0.0880 (3)0.0791 (8)
N10.1070 (2)0.63278 (14)0.2448 (4)0.0658 (8)
H1A0.15610.61160.28700.099*
H1B0.09700.66290.32010.099*
H1C0.11410.65020.14280.099*
O20.1721 (2)0.73912 (12)0.7426 (5)0.1005 (11)
O50.3253 (3)0.66497 (17)0.3658 (4)0.1196 (14)
O80.4341 (2)0.61129 (16)0.2440 (6)0.1222 (14)
O60.2856 (2)0.59355 (16)0.1434 (5)0.1159 (12)
O40.0539 (2)0.6843 (2)0.5835 (5)0.1218 (13)
Cl10.12968 (6)0.68032 (4)0.71443 (11)0.0502 (2)
Cl20.35009 (6)0.63848 (4)0.21107 (12)0.0580 (3)
C10.0299 (2)0.58913 (16)0.2194 (4)0.0544 (9)
C30.0302 (3)0.48757 (18)0.2325 (5)0.0674 (11)
H30.02360.44480.25870.081*
C20.0446 (3)0.52653 (16)0.2615 (4)0.0562 (9)
C40.1126 (3)0.5099 (2)0.1672 (5)0.0786 (12)
H40.16120.48250.14970.094*
C60.0529 (3)0.6145 (2)0.1543 (6)0.0713 (11)
C90.1350 (3)0.50228 (19)0.3346 (5)0.0723 (11)
H9A0.15540.52530.44140.087*
H9B0.17580.51180.25180.087*
C100.1413 (3)0.43215 (19)0.3754 (6)0.0896 (14)
H10A0.20190.42160.42100.134*
H10B0.12310.40850.27030.134*
H10C0.10300.42210.46060.134*
C50.1239 (3)0.5723 (2)0.1274 (6)0.0850 (13)
H50.18040.58690.08130.102*
C110.4615 (2)0.64544 (17)0.7574 (4)0.0548 (9)
C160.5406 (3)0.6799 (2)0.7952 (5)0.0634 (10)
C120.4577 (3)0.58089 (18)0.7432 (5)0.0647 (10)
C200.3702 (4)0.4774 (3)0.7116 (8)0.125 (2)
H20A0.30980.46240.68540.187*
H20B0.39560.46300.82580.187*
H20C0.40490.46160.62600.187*
C130.5396 (3)0.5487 (2)0.7667 (6)0.0885 (14)
H130.54050.50490.75980.106*
C190.3704 (3)0.5457 (2)0.7082 (7)0.0876 (14)
H19A0.33330.56000.79300.105*
H19B0.34110.55870.59380.105*
C170.5385 (3)0.7511 (2)0.8118 (6)0.0765 (11)
H17A0.50140.76160.90050.092*
H17B0.50930.76820.70170.092*
C150.6199 (3)0.6456 (3)0.8166 (6)0.0883 (14)
H150.67450.66630.84250.106*
C140.6174 (3)0.5811 (3)0.7994 (7)0.0945 (15)
H140.67100.55890.81060.113*
C180.6274 (4)0.7845 (3)0.8577 (8)0.120 (2)
H18A0.61760.82920.86280.180*
H18B0.66490.77550.77000.180*
H18C0.65620.76990.96940.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C7A0.044 (6)0.062 (9)0.168 (16)0.000 (6)0.007 (7)0.039 (9)
C7B0.119 (14)0.088 (8)0.130 (11)0.023 (9)0.083 (11)0.023 (8)
C8A0.050 (8)0.135 (6)0.187 (16)0.045 (7)0.002 (6)0.010 (9)
C8B0.050 (8)0.135 (6)0.187 (16)0.045 (7)0.002 (6)0.010 (9)
N20.0530 (17)0.0584 (16)0.0511 (16)0.0024 (14)0.0081 (14)0.0052 (13)
O30.146 (3)0.103 (2)0.0636 (17)0.043 (2)0.0447 (19)0.0017 (16)
O10.0757 (19)0.0764 (18)0.114 (2)0.0053 (15)0.0331 (18)0.0259 (16)
O70.107 (2)0.0746 (17)0.0590 (15)0.0023 (16)0.0237 (16)0.0112 (13)
N10.077 (2)0.0641 (19)0.0620 (18)0.0194 (16)0.0293 (16)0.0043 (14)
O20.128 (3)0.0523 (16)0.129 (3)0.0247 (17)0.044 (2)0.0107 (16)
O50.181 (4)0.136 (3)0.0490 (16)0.062 (3)0.041 (2)0.0098 (17)
O80.073 (2)0.082 (2)0.216 (4)0.0294 (18)0.034 (2)0.020 (2)
O60.108 (3)0.091 (2)0.149 (3)0.036 (2)0.022 (2)0.002 (2)
O40.083 (2)0.165 (3)0.107 (3)0.030 (2)0.020 (2)0.002 (2)
Cl10.0526 (5)0.0464 (4)0.0535 (5)0.0003 (4)0.0142 (4)0.0012 (4)
Cl20.0594 (6)0.0571 (5)0.0608 (5)0.0063 (5)0.0198 (4)0.0041 (4)
C10.062 (2)0.057 (2)0.0494 (18)0.0151 (18)0.0236 (17)0.0073 (15)
C30.086 (3)0.056 (2)0.064 (2)0.022 (2)0.021 (2)0.0045 (17)
C20.072 (3)0.055 (2)0.0449 (18)0.0150 (18)0.0206 (18)0.0058 (15)
C40.076 (3)0.091 (3)0.071 (3)0.033 (3)0.017 (2)0.001 (2)
C60.076 (3)0.068 (3)0.078 (3)0.004 (2)0.036 (2)0.009 (2)
C90.076 (3)0.072 (3)0.071 (3)0.010 (2)0.017 (2)0.004 (2)
C100.104 (4)0.075 (3)0.089 (3)0.004 (3)0.012 (3)0.012 (2)
C50.065 (3)0.111 (4)0.082 (3)0.006 (3)0.020 (2)0.013 (3)
C110.060 (2)0.067 (2)0.0380 (17)0.0130 (19)0.0068 (16)0.0003 (15)
C160.058 (2)0.079 (3)0.053 (2)0.007 (2)0.0057 (18)0.0018 (18)
C120.068 (3)0.065 (2)0.062 (2)0.009 (2)0.009 (2)0.0027 (18)
C200.101 (4)0.105 (4)0.163 (6)0.001 (3)0.001 (4)0.017 (4)
C130.082 (3)0.075 (3)0.110 (4)0.025 (3)0.020 (3)0.007 (3)
C190.077 (3)0.063 (3)0.121 (4)0.010 (2)0.006 (3)0.002 (2)
C170.060 (3)0.090 (3)0.078 (3)0.007 (2)0.007 (2)0.013 (2)
C150.057 (3)0.114 (4)0.091 (3)0.009 (3)0.001 (2)0.004 (3)
C140.066 (3)0.100 (4)0.119 (4)0.024 (3)0.017 (3)0.009 (3)
C180.095 (4)0.118 (4)0.145 (5)0.031 (3)0.010 (4)0.024 (4)
Geometric parameters (Å, º) top
C7A—C8A1.22 (3)C2—C91.493 (5)
C7A—C61.599 (17)C4—C51.363 (6)
C7A—H7A10.9700C4—H40.9300
C7A—H7A20.9700C6—C51.390 (6)
C7B—C8B1.38 (2)C9—C101.520 (5)
C7B—C61.468 (19)C9—H9A0.9700
C7B—H7B10.9700C9—H9B0.9700
C7B—H7B20.9700C10—H10A0.9600
C8A—H8A10.9600C10—H10B0.9600
C8A—H8A20.9600C10—H10C0.9600
C8A—H8A30.9600C5—H50.9300
C8B—H8B10.9600C11—C121.373 (5)
C8B—H8B20.9600C11—C161.395 (5)
C8B—H8B30.9600C16—C151.392 (6)
N2—C111.471 (4)C16—C171.515 (6)
N2—H2A0.8900C12—C131.402 (5)
N2—H2B0.8900C12—C191.506 (6)
N2—H2C0.8900C20—C191.446 (6)
O3—Cl11.404 (3)C20—H20A0.9600
O1—Cl11.416 (3)C20—H20B0.9600
O7—Cl21.443 (3)C20—H20C0.9600
N1—C11.478 (4)C13—C141.354 (6)
N1—H1A0.8900C13—H130.9300
N1—H1B0.8900C19—H19A0.9700
N1—H1C0.8900C19—H19B0.9700
O2—Cl11.404 (3)C17—C181.515 (6)
O5—Cl21.417 (3)C17—H17A0.9700
O8—Cl21.385 (3)C17—H17B0.9700
O6—Cl21.409 (3)C15—C141.374 (6)
O4—Cl11.418 (3)C15—H150.9300
C1—C21.376 (5)C14—H140.9300
C1—C61.389 (5)C18—H18A0.9600
C3—C41.360 (6)C18—H18B0.9600
C3—C21.391 (5)C18—H18C0.9600
C3—H30.9300
C8A—C7A—C6115.0 (16)C5—C6—C7B110.6 (8)
C8A—C7A—H7A1108.5C1—C6—C7A114.6 (6)
C6—C7A—H7A1108.5C5—C6—C7A128.9 (7)
C8A—C7A—H7A2108.5C7B—C6—C7A21.4 (10)
C6—C7A—H7A2108.5C2—C9—C10116.3 (4)
H7A1—C7A—H7A2107.5C2—C9—H9A108.2
C8B—C7B—C6134.4 (14)C10—C9—H9A108.2
C8B—C7B—H7B1103.6C2—C9—H9B108.2
C6—C7B—H7B1103.6C10—C9—H9B108.2
C8B—C7B—H7B2103.6H9A—C9—H9B107.4
C6—C7B—H7B2103.6C9—C10—H10A109.5
H7B1—C7B—H7B2105.3C9—C10—H10B109.5
C7A—C8A—H8A1109.5H10A—C10—H10B109.5
C7A—C8A—H8A2109.5C9—C10—H10C109.5
H8A1—C8A—H8A2109.5H10A—C10—H10C109.5
C7A—C8A—H8A3109.5H10B—C10—H10C109.5
H8A1—C8A—H8A3109.5C4—C5—C6121.4 (5)
H8A2—C8A—H8A3109.5C4—C5—H5119.3
C7B—C8B—H8B1109.5C6—C5—H5119.3
C7B—C8B—H8B2109.5C12—C11—C16124.3 (4)
H8B1—C8B—H8B2109.5C12—C11—N2117.6 (3)
C7B—C8B—H8B3109.5C16—C11—N2118.1 (3)
H8B1—C8B—H8B3109.5C15—C16—C11116.7 (4)
H8B2—C8B—H8B3109.5C15—C16—C17122.5 (4)
C11—N2—H2A109.5C11—C16—C17120.8 (3)
C11—N2—H2B109.5C11—C12—C13116.7 (4)
H2A—N2—H2B109.5C11—C12—C19122.3 (4)
C11—N2—H2C109.5C13—C12—C19121.0 (4)
H2A—N2—H2C109.5C19—C20—H20A109.5
H2B—N2—H2C109.5C19—C20—H20B109.5
C1—N1—H1A109.5H20A—C20—H20B109.5
C1—N1—H1B109.5C19—C20—H20C109.5
H1A—N1—H1B109.5H20A—C20—H20C109.5
C1—N1—H1C109.5H20B—C20—H20C109.5
H1A—N1—H1C109.5C14—C13—C12120.3 (4)
H1B—N1—H1C109.5C14—C13—H13119.9
O3—Cl1—O2110.8 (2)C12—C13—H13119.9
O3—Cl1—O1110.4 (2)C20—C19—C12119.8 (4)
O2—Cl1—O1109.79 (19)C20—C19—H19A107.4
O3—Cl1—O4108.9 (2)C12—C19—H19A107.4
O2—Cl1—O4111.2 (2)C20—C19—H19B107.4
O1—Cl1—O4105.6 (2)C12—C19—H19B107.4
O8—Cl2—O6110.8 (2)H19A—C19—H19B106.9
O8—Cl2—O5110.8 (3)C16—C17—C18117.2 (4)
O6—Cl2—O5109.2 (2)C16—C17—H17A108.0
O8—Cl2—O7110.6 (2)C18—C17—H17A108.0
O6—Cl2—O7109.1 (2)C16—C17—H17B108.0
O5—Cl2—O7106.27 (19)C18—C17—H17B108.0
C2—C1—C6124.4 (3)H17A—C17—H17B107.2
C2—C1—N1118.4 (3)C14—C15—C16119.7 (5)
C6—C1—N1117.3 (3)C14—C15—H15120.1
C4—C3—C2122.2 (4)C16—C15—H15120.1
C4—C3—H3118.9C13—C14—C15122.3 (5)
C2—C3—H3118.9C13—C14—H14118.8
C1—C2—C3115.8 (4)C15—C14—H14118.8
C1—C2—C9121.9 (3)C17—C18—H18A109.5
C3—C2—C9122.3 (3)C17—C18—H18B109.5
C3—C4—C5120.0 (4)H18A—C18—H18B109.5
C3—C4—H4120.0C17—C18—H18C109.5
C5—C4—H4120.0H18A—C18—H18C109.5
C1—C6—C5116.2 (4)H18B—C18—H18C109.5
C1—C6—C7B132.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.892.413.029 (4)127
N1—H1B···O40.892.273.043 (5)146
N1—H1B···O2i0.892.482.889 (4)109
N1—H1C···O3ii0.892.102.935 (4)157
N1—H1C···O2i0.892.582.889 (4)101
N2—H2A···O10.892.172.971 (4)149
N2—H2B···O50.892.392.875 (4)114
N2—H2B···O7iii0.892.242.991 (4)141
N2—H2C···O7iv0.892.032.805 (3)144
C3—H3···O3v0.932.603.321 (5)134
C13—H13···O8vi0.932.493.418 (6)172
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N+·ClO4
Mr249.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.105 (3), 21.192 (5), 7.718 (6)
β (°) 98.10 (3)
V3)2446 (2)
Z8
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.17
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15750, 11941, 2954
Rint0.052
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.278, 0.91
No. of reflections11941
No. of parameters304
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.36, 0.36

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.892.413.029 (4)127
N1—H1B···O40.892.273.043 (5)146
N1—H1B···O2i0.892.482.889 (4)109
N1—H1C···O3ii0.892.102.935 (4)157
N1—H1C···O2i0.892.582.889 (4)101
N2—H2A···O10.892.172.971 (4)149
N2—H2B···O50.892.392.875 (4)114
N2—H2B···O7iii0.892.242.991 (4)141
N2—H2C···O7iv0.892.032.805 (3)144
C3—H3···O3v0.932.603.321 (5)134
C13—H13···O8vi0.932.493.418 (6)172
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1; (iii) x, y+3/2, z+1/2; (iv) x, y, z+1; (v) x, y+1, z+1; (vi) x+1, y+1, z+1.
 

References

First citationBernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationCzarnecki, P., Nawrocik, W., Pajak, Z. & Wasicki, J. (1994). Phys. Rev. B, 49, 1511–1512.  CrossRef CAS Web of Science
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationMylrajan, M. & Srinivasan, T. K. K. (1991). J. Raman Spectrosc. 22, 53–55.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationToumi Akriche, S., Rzaigui, M., Al-Hokbany, N. & Mahfouz, R. M. (2010). Acta Cryst. E66, o300.  Web of Science CSD CrossRef IUCr Journals
First citationXiao, D., An, H., Wang, E. & Xu, L. (2005). J. Mol. Struct. 738, 217–225.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds