metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m336-m337

Bis(2-{[2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl](hydr­­oxy)meth­yl}piperidin-1-ium) tetra­chloridodi­phenyl­stannate(IV)

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, bCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 February 2010; accepted 19 February 2010; online 27 February 2010)

In the title salt, (C17H17F6N2O)2[Sn(C6H5)2Cl4], the complete anion is generated by crystallograaphic inversion symmetry, giving a trans-SnC2Cl4 octa­hedral coordination geometry for the metal atom. In the cation, the quinoline residue is almost normal to the other atoms, so that the ion has an L-shaped conformation [the C—C—C—C torsion angle linking the fused-ring systems is 100.9 (7)°]; the six-membered piperidin-1-ium ring has a chair conformation. An intra­molecular N—H⋯O inter­action occurs. In the crystal, N—H⋯Cl and O—H⋯Cl hydrogen bonds link the components into a supra­molecular chain propagating along the a axis. C—H⋯Cl inter­actions are also present.

Related literature

For information on mefloquine and its derivatives, see: Kunin & Ellis (2007[Kunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624-1630.]); Maguire et al. (2006[Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067-1072.]); Dow et al. (2004[Dow, G. S., Koenig, M. L., Wolf, L., Gerena, L., Lopez-Sanchez, M., Hudson, T. H. & Bhattacharjee, A. K. (2004). Antimicrob. Agents Chemother. 48, 2624-2632.]); Croft & Herxheimer (2002[Croft, A. M. & Herxheimer, A. (2002). BMC Public Health. Published online 2002 March 25. doi:10.1186/1471-2458-2-6.]); Lima et al. (2002[Lima, P. C., Avery, M. A., Tekwani, B. L., Alves, H. De M., Barreiro, E. J. & Fraga, C. A. M. (2002). Farmaco, 57, 825-832.]); Biot et al. (2000[Biot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Dive, D. & Brocard, J. S. (2000). Eur. J. Med. Chem. 35, 707-714.]); Roesner et al. (1981[Roesner, M., Brossi, A. & Silverton, J. V. (1981). Heterocycles, 15, 925-933.]). For the crystal structures of mefloquine and its salts, see: Obaleye et al. (2009[Obaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859-868.]); Skórska et al. (2005[Skórska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850-853.]); Karle & Karle (1991a[Karle, J. M. & Karle, I. L. (1991a). Acta Cryst. C47, 2391-2395.],b[Karle, J. M. & Karle, I. L. (1991b). Antimicrob. Agents Chemother. 35, 2238-2395.], 2002[Karle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529-1534.]).

[Scheme 1]

Experimental

Crystal data
  • (C17H17F6N2O)2[Sn(C6H5)2Cl4]

  • Mr = 1173.34

  • Triclinic, [P \overline 1]

  • a = 8.5578 (4) Å

  • b = 9.1479 (7) Å

  • c = 15.9866 (11) Å

  • α = 104.739 (3)°

  • β = 91.671 (4)°

  • γ = 97.622 (4)°

  • V = 1197.06 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 120 K

  • 0.08 × 0.04 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 1.000

  • 16610 measured reflections

  • 4164 independent reflections

  • 3313 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.198

  • S = 1.03

  • 4164 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C18 2.135 (7)
Sn—Cl2 2.5804 (19)
Sn—Cl1 2.6382 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.92 2.39 2.789 (9) 106
N2—H1n⋯Cl1i 0.92 2.27 3.166 (7) 166
N2—H2n⋯Cl1ii 0.92 2.67 3.311 (7) 127
O1—H1o⋯Cl2iii 0.84 2.21 3.028 (6) 167
C20—H20⋯Cl2iv 0.95 2.76 3.557 (9) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z-1; (iii) -x+2, -y+1, -z+1; (iv) x, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Mefloquine, manufactured as the racemic erythro hydrochloride salt, is a synthetic analogue of quinine used in the prevention and treatment for malaria in combination with other drugs (Maguire et al., 2006). While both enantiomers of erythro mefloquinium hydrochloride are active, the (+) form is the more potent against the D6 and W2 strains of Plasmodium falciparum (Karle & Karle, 2002). Mefloquine was an effective antimalarial agent, when first introduced in 1971, and because of its long half-life was a good prophylactic. However by the end of the 20th century, a widespread resistance of Plasmodium sp. developed and this, together with undesirable side-effects such as birth defects, anxiety, aggression, seizures, nightmares, neuropathy, insomnia, central nervous system problems, acute depression, and urinary disorders, have resulted in a decline in its use (Croft & Herxheimer, 2002; Dow et al., 2004). Much effort is underway to find mefloquine analogues having increased efficacity and reduced adverse side-effects (Lima et al. 2002; Biot et al., 2000; Roesner et al., 1981). Mefloquine derivatives are also undergoing tests against other diseases, for example as anti-viral and anti-tuberculosis agents (Kunin & Ellis, 2007). A few crystal structures of mefloquine (Skórska et al., 2005) and mefloquinium salts, including hydrated chloride (Karle & Karle, 1991a; Karle & Karle, 2002; Skórska et al., 2005), methylsulfonate (Karle & Karle, 1991b), tetrachlorocobaltate (Skórska et al., 2005), and tetrachlorocuprate and tetrabromocadmate salts (Obaleye et al., 2009) have been reported. We now report the structure of the title salt, (I).

The asymmetric unit of (I) comprises a piperidin-1-ium cation, Fig. 1, and half a tetrachloridodiphenylstannate anion, Fig. 2, as this is located on a centre of inversion. Confirmation of protonation at the amine-N2 atom is found in the nature of the intermolecular interactions, see below. Overall, the cation has an L-shaped conformation as the quinoline residue is approximately orthogonal to the rest of the molecule; the C2–C3–C12–C13 torsion angle is 100.9 (7) °. The six-membered piperidin-1-ium ring adopts a chair conformation. The ammonium and piperidin-1-ium-N2 and hydroxyl-O1 groups lie to the same side of the molecule, a configuration stabilised by an intramolecular N–H···O hydrogen bond, Table 1. From symmetry, the tin atom in the anion, Fig. 2, exists with a six-coordinate trans-C2Cl4 donor set that defines a distorted octahedral geometry. The disparity in the Sn–Cl bond distances whereby the Sn–Cl1 bond [2.6382 (18) Å] is significantly longer than the Sn—Cl2 bond [2.5804 (19) Å], is rationalised by the pattern of intermolecular interactions, Table 1, as the Cl1 atom forms two hydrogen bonds compared with one for the Cl2 atom. Each of the piperidin-1-ium-H atoms forms a hydrogen bonding interaction with a Cl1 atom to generate an eight-membered {···HNH···Cl}2 synthon, Fig. 3. The somewhat weaker nature of the interaction involving the H2n atom occurs as the H2n participates in an intramolecular contact as described above. The Cl2 atom only forms one signficant hydrogen bond, i.e. with the hydroxyl group. The hydrogen bonding interactions generate a supramolecular chain orientated along the a axis. The crystal packing comprises layers supramolecular chains in the ab plane with the major interactions between them being of the type C–H···Cl, Table 1 and Fig. 4. Globally, the crystal structure comprises alternating layers of cations and anions.

Related literature top

For information on mefloquine and its derivatives, see: Kunin & Ellis (2007); Maguire et al. (2006); Dow et al. (2004); Croft & Herxheimer (2002); Lima et al. (2002); Biot et al. (2000); Roesner et al. (1981). For the crystal structures of mefloquine and its salts, see: Obaleye et al. (2009); Skórska et al. (2005); Karle & Karle (1991a,b, 2002).

Experimental top

A solution containing mefloquine (0.378 g, 1 mmol) and diphenyltin dichloride (0.345 g, 1 mmol) in CHCl3 for 1 h was refluxed for 30 min. Crystals of the title compound slowly formed on evaporation of the solvent, m.pt. 498–500 K, with effervescence and formation of a deep-red melt. The crystals used in the X-ray study were grown from CHCl3/EtOH (1:1 v/v). (IR, KBr): ν: 3323, 3193, 2989, 2959, 2844, 1601, 1575, 1519, 1479, 1455, 1432, 1374, 1317, 1268, 1214, 1183, 1142, 1111, 1049, 998, 917, 837, 779, 740, 713, 697, 669, 532, 458, 434 cm-1.

Refinement top

The H atoms were geometrically placed (O–H = 0.84 Å, N–H = 0.92 Å, and C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C) and 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of the anion in (I) showing displacement ellipsoids at the 35% probability level. The unlabelled non-hydrogen atoms are generated by the symmetry operation (1–x, 1–y, 2–z).
[Figure 3] Fig. 3. A view of a supramolecular chain in (I) aligned along the a axis. The O–H···Cl and N–H···Cl hydrogen bonds are shown as orange and blue dashed lines, respectively. Colour code: Sn, orange; Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green.
[Figure 4] Fig. 4. A view in projection of the unit cell contents in (I) showing the alternation of cations and anions along the c axis. The C–H···Cl interactions are shown as orange dashed lines. Colour code: Sn, orange; Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green.
Bis(2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium) tetrachloridodiphenylstannate(IV) top
Crystal data top
(C17H17F6N2O)2[Sn(C6H5)2Cl4]Z = 1
Mr = 1173.34F(000) = 590
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5578 (4) ÅCell parameters from 37314 reflections
b = 9.1479 (7) Åθ = 2.9–27.5°
c = 15.9866 (11) ŵ = 0.85 mm1
α = 104.739 (3)°T = 120 K
β = 91.671 (4)°Lath, colourless
γ = 97.622 (4)°0.08 × 0.04 × 0.01 mm
V = 1197.06 (14) Å3
Data collection top
Nonius KappaCCD
diffractometer
4164 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode3313 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.094
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1010
Tmin = 0.843, Tmax = 1.000l = 1919
16610 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2 + 9.2689P]
where P = (Fo2 + 2Fc2)/3
4164 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C17H17F6N2O)2[Sn(C6H5)2Cl4]γ = 97.622 (4)°
Mr = 1173.34V = 1197.06 (14) Å3
Triclinic, P1Z = 1
a = 8.5578 (4) ÅMo Kα radiation
b = 9.1479 (7) ŵ = 0.85 mm1
c = 15.9866 (11) ÅT = 120 K
α = 104.739 (3)°0.08 × 0.04 × 0.01 mm
β = 91.671 (4)°
Data collection top
Nonius KappaCCD
diffractometer
4164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3313 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.094
16610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
4164 reflectionsΔρmin = 0.61 e Å3
314 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.4043 (6)0.6359 (8)0.5099 (4)0.0544 (16)
F21.2203 (6)0.5658 (6)0.5835 (4)0.0440 (14)
F31.3067 (6)0.8005 (6)0.6046 (3)0.0444 (14)
F40.7444 (5)0.7621 (5)0.6107 (3)0.0313 (11)
F50.8916 (5)0.9772 (5)0.6216 (3)0.0352 (12)
F60.6421 (5)0.9568 (6)0.5959 (3)0.0357 (12)
O11.2216 (6)0.5258 (7)0.2147 (4)0.0298 (13)
H1O1.26150.57810.18240.045*
N11.0279 (7)0.7459 (7)0.5071 (4)0.0192 (13)
N20.9662 (8)0.3538 (7)0.1053 (4)0.0253 (15)
H1N0.92830.42420.08100.030*
H2N1.07040.35260.09290.030*
C11.1479 (8)0.6823 (9)0.4755 (5)0.0216 (16)
C21.1698 (9)0.6207 (9)0.3865 (5)0.0229 (17)
H21.26000.57380.36840.027*
C31.0535 (8)0.6320 (8)0.3274 (5)0.0203 (16)
C40.9256 (8)0.7103 (8)0.3568 (5)0.0175 (15)
C50.8083 (8)0.7384 (8)0.3013 (5)0.0184 (15)
H50.81480.70640.24030.022*
C60.6856 (9)0.8109 (9)0.3343 (5)0.0243 (17)
H60.60840.82980.29600.029*
C70.6721 (9)0.8581 (9)0.4245 (5)0.0257 (17)
H70.58380.90520.44610.031*
C80.7842 (9)0.8372 (8)0.4816 (5)0.0221 (16)
C90.9155 (8)0.7627 (8)0.4485 (5)0.0191 (15)
C101.2703 (9)0.6709 (9)0.5419 (5)0.0259 (17)
C110.7672 (9)0.8840 (9)0.5768 (5)0.0261 (18)
C121.0672 (8)0.5601 (8)0.2328 (5)0.0222 (17)
H121.03800.63030.19810.027*
C130.9577 (9)0.4048 (9)0.2023 (5)0.0231 (17)
H130.84680.42080.21570.028*
C140.8746 (10)0.1981 (10)0.0636 (6)0.0317 (19)
H14A0.89190.16900.00090.038*
H14B0.76030.20110.07000.038*
C150.9281 (10)0.0804 (10)0.1060 (6)0.0308 (19)
H15A0.86420.02040.08010.037*
H15B1.04010.07130.09510.037*
C160.9102 (10)0.1257 (10)0.2019 (6)0.0317 (19)
H16A0.94850.04930.22850.038*
H16B0.79710.12740.21290.038*
C171.0039 (9)0.2834 (9)0.2434 (5)0.0241 (17)
H17A0.98590.31270.30600.029*
H17B1.11800.27810.23770.029*
Sn0.50000.50001.00000.0191 (3)
Cl10.2014 (2)0.3929 (2)0.94923 (12)0.0246 (4)
Cl20.5841 (2)0.2788 (2)0.88282 (13)0.0306 (5)
C180.5166 (8)0.6443 (8)0.9137 (5)0.0193 (16)
C190.5741 (9)0.7987 (8)0.9438 (5)0.0228 (17)
H190.60490.84081.00360.027*
C200.5871 (9)0.8925 (9)0.8875 (6)0.0291 (19)
H200.62350.99870.90910.035*
C210.5471 (10)0.8308 (10)0.7998 (6)0.0308 (19)
H210.56030.89440.76110.037*
C220.4875 (9)0.6764 (9)0.7677 (5)0.0271 (18)
H220.45690.63450.70780.033*
C230.4740 (8)0.5857 (9)0.8251 (5)0.0234 (17)
H230.43460.48010.80370.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.027 (3)0.093 (5)0.047 (3)0.027 (3)0.001 (2)0.016 (3)
F20.042 (3)0.039 (3)0.054 (3)0.006 (2)0.018 (3)0.028 (3)
F30.050 (3)0.035 (3)0.043 (3)0.001 (2)0.025 (2)0.006 (2)
F40.033 (3)0.032 (3)0.030 (3)0.009 (2)0.005 (2)0.008 (2)
F50.032 (3)0.031 (3)0.035 (3)0.001 (2)0.001 (2)0.004 (2)
F60.032 (3)0.042 (3)0.034 (3)0.022 (2)0.008 (2)0.002 (2)
O10.026 (3)0.038 (3)0.034 (3)0.013 (3)0.015 (2)0.018 (3)
N10.017 (3)0.013 (3)0.024 (3)0.001 (2)0.002 (3)0.002 (3)
N20.030 (4)0.026 (4)0.023 (4)0.011 (3)0.007 (3)0.008 (3)
C10.017 (4)0.023 (4)0.027 (4)0.001 (3)0.007 (3)0.009 (3)
C20.020 (4)0.019 (4)0.028 (4)0.004 (3)0.002 (3)0.004 (3)
C30.021 (4)0.012 (4)0.026 (4)0.005 (3)0.005 (3)0.004 (3)
C40.021 (4)0.011 (3)0.022 (4)0.000 (3)0.006 (3)0.006 (3)
C50.022 (4)0.013 (4)0.020 (4)0.000 (3)0.001 (3)0.004 (3)
C60.031 (4)0.023 (4)0.023 (4)0.007 (3)0.000 (3)0.010 (3)
C70.027 (4)0.019 (4)0.034 (5)0.011 (3)0.003 (3)0.009 (3)
C80.028 (4)0.010 (4)0.026 (4)0.002 (3)0.002 (3)0.001 (3)
C90.019 (4)0.013 (4)0.024 (4)0.001 (3)0.003 (3)0.004 (3)
C100.024 (4)0.027 (4)0.027 (4)0.005 (3)0.001 (3)0.005 (4)
C110.028 (4)0.022 (4)0.029 (4)0.001 (3)0.001 (3)0.011 (3)
C120.018 (4)0.019 (4)0.031 (4)0.015 (3)0.007 (3)0.002 (3)
C130.024 (4)0.024 (4)0.021 (4)0.007 (3)0.013 (3)0.002 (3)
C140.031 (4)0.029 (5)0.028 (5)0.007 (4)0.001 (4)0.006 (4)
C150.026 (4)0.027 (5)0.036 (5)0.000 (3)0.006 (4)0.004 (4)
C160.031 (4)0.033 (5)0.039 (5)0.015 (4)0.004 (4)0.017 (4)
C170.022 (4)0.026 (4)0.023 (4)0.001 (3)0.001 (3)0.006 (3)
Sn0.0219 (4)0.0159 (4)0.0223 (4)0.0064 (3)0.0051 (3)0.0081 (3)
Cl10.0218 (9)0.0258 (10)0.0282 (10)0.0037 (7)0.0014 (8)0.0104 (8)
Cl20.0438 (12)0.0208 (10)0.0316 (11)0.0129 (9)0.0151 (9)0.0090 (9)
C180.011 (3)0.022 (4)0.029 (4)0.007 (3)0.007 (3)0.012 (3)
C190.027 (4)0.016 (4)0.029 (4)0.009 (3)0.007 (3)0.008 (3)
C200.023 (4)0.021 (4)0.048 (6)0.005 (3)0.013 (4)0.016 (4)
C210.033 (5)0.040 (5)0.030 (5)0.019 (4)0.007 (4)0.022 (4)
C220.024 (4)0.031 (5)0.026 (4)0.008 (3)0.004 (3)0.006 (4)
C230.019 (4)0.025 (4)0.029 (4)0.010 (3)0.007 (3)0.007 (3)
Geometric parameters (Å, º) top
F1—C101.314 (9)C12—H121.0000
F2—C101.334 (10)C13—C171.515 (11)
F3—C101.336 (9)C13—H131.0000
F4—C111.353 (9)C14—C151.521 (12)
F5—C111.333 (9)C14—H14A0.9900
F6—C111.337 (9)C14—H14B0.9900
O1—C121.419 (8)C15—C161.501 (12)
O1—H1O0.8400C15—H15A0.9900
N1—C11.299 (9)C15—H15B0.9900
N1—C91.373 (10)C16—C171.529 (11)
N2—C141.509 (10)C16—H16A0.9900
N2—C131.509 (10)C16—H16B0.9900
N2—H1N0.9200C17—H17A0.9900
N2—H2N0.9200C17—H17B0.9900
C1—C21.418 (11)Sn—C18i2.135 (7)
C1—C101.502 (11)Sn—C182.135 (7)
C2—C31.385 (11)Sn—Cl2i2.5804 (19)
C2—H20.9500Sn—Cl22.5804 (19)
C3—C41.414 (10)Sn—Cl1i2.6382 (18)
C3—C121.503 (10)Sn—Cl12.6382 (18)
C4—C51.411 (10)C18—C191.387 (11)
C4—C91.431 (10)C18—C231.399 (11)
C5—C61.363 (11)C19—C201.390 (11)
C5—H50.9500C19—H190.9500
C6—C71.409 (11)C20—C211.385 (12)
C6—H60.9500C20—H200.9500
C7—C81.369 (11)C21—C221.394 (12)
C7—H70.9500C21—H210.9500
C8—C91.436 (10)C22—C231.383 (11)
C8—C111.490 (11)C22—H220.9500
C12—C131.549 (11)C23—H230.9500
C12—O1—H1O109.5C12—C13—H13109.0
C1—N1—C9116.8 (6)N2—C14—C15110.0 (7)
C14—N2—C13114.1 (6)N2—C14—H14A109.7
C14—N2—H1N108.7C15—C14—H14A109.7
C13—N2—H1N108.7N2—C14—H14B109.7
C14—N2—H2N108.7C15—C14—H14B109.7
C13—N2—H2N108.7H14A—C14—H14B108.2
H1N—N2—H2N107.6C16—C15—C14110.8 (7)
N1—C1—C2126.4 (7)C16—C15—H15A109.5
N1—C1—C10114.9 (7)C14—C15—H15A109.5
C2—C1—C10118.7 (6)C16—C15—H15B109.5
C3—C2—C1116.9 (7)C14—C15—H15B109.5
C3—C2—H2121.5H15A—C15—H15B108.1
C1—C2—H2121.5C15—C16—C17110.7 (7)
C2—C3—C4119.8 (7)C15—C16—H16A109.5
C2—C3—C12118.7 (7)C17—C16—H16A109.5
C4—C3—C12121.6 (7)C15—C16—H16B109.5
C5—C4—C3124.0 (7)C17—C16—H16B109.5
C5—C4—C9118.7 (6)H16A—C16—H16B108.1
C3—C4—C9117.3 (7)C13—C17—C16112.4 (6)
C6—C5—C4120.8 (7)C13—C17—H17A109.1
C6—C5—H5119.6C16—C17—H17A109.1
C4—C5—H5119.6C13—C17—H17B109.1
C5—C6—C7120.8 (7)C16—C17—H17B109.1
C5—C6—H6119.6H17A—C17—H17B107.9
C7—C6—H6119.6C18i—Sn—C18180.0
C8—C7—C6121.1 (7)C18i—Sn—Cl2i91.2 (2)
C8—C7—H7119.4C18—Sn—Cl2i88.8 (2)
C6—C7—H7119.4C18i—Sn—Cl288.8 (2)
C7—C8—C9119.2 (7)C18—Sn—Cl291.2 (2)
C7—C8—C11120.8 (7)Cl2i—Sn—Cl2180.0
C9—C8—C11120.0 (7)C18i—Sn—Cl1i92.46 (19)
N1—C9—C4122.6 (6)C18—Sn—Cl1i87.54 (19)
N1—C9—C8118.0 (7)Cl2i—Sn—Cl1i89.46 (6)
C4—C9—C8119.4 (6)Cl2—Sn—Cl1i90.54 (6)
F1—C10—F2106.4 (7)C18i—Sn—Cl187.54 (19)
F1—C10—F3106.4 (7)C18—Sn—Cl192.46 (19)
F2—C10—F3104.6 (7)Cl2i—Sn—Cl190.54 (6)
F1—C10—C1114.0 (7)Cl2—Sn—Cl189.46 (6)
F2—C10—C1112.1 (6)Cl1i—Sn—Cl1180.0
F3—C10—C1112.6 (6)C19—C18—C23118.1 (7)
F5—C11—F6106.3 (6)C19—C18—Sn120.6 (6)
F5—C11—F4106.7 (6)C23—C18—Sn121.2 (6)
F6—C11—F4105.9 (6)C18—C19—C20120.8 (8)
F5—C11—C8113.8 (6)C18—C19—H19119.6
F6—C11—C8111.7 (6)C20—C19—H19119.6
F4—C11—C8111.8 (6)C21—C20—C19119.9 (8)
O1—C12—C3112.3 (6)C21—C20—H20120.1
O1—C12—C13105.2 (6)C19—C20—H20120.1
C3—C12—C13111.0 (6)C20—C21—C22120.7 (8)
O1—C12—H12109.4C20—C21—H21119.6
C3—C12—H12109.4C22—C21—H21119.6
C13—C12—H12109.4C23—C22—C21118.3 (8)
N2—C13—C17110.0 (6)C23—C22—H22120.8
N2—C13—C12106.0 (6)C21—C22—H22120.8
C17—C13—C12113.8 (6)C22—C23—C18122.2 (7)
N2—C13—H13109.0C22—C23—H23118.9
C17—C13—H13109.0C18—C23—H23118.9
C9—N1—C1—C23.9 (11)C9—C8—C11—F6177.6 (6)
C9—N1—C1—C10178.1 (6)C7—C8—C11—F4113.1 (8)
N1—C1—C2—C31.4 (11)C9—C8—C11—F463.9 (9)
C10—C1—C2—C3179.3 (7)C2—C3—C12—O116.4 (9)
C1—C2—C3—C43.6 (10)C4—C3—C12—O1163.5 (6)
C1—C2—C3—C12176.4 (6)C2—C3—C12—C13100.9 (7)
C2—C3—C4—C5174.8 (7)C4—C3—C12—C1379.1 (8)
C12—C3—C4—C55.1 (11)C14—N2—C13—C1752.8 (8)
C2—C3—C4—C95.6 (10)C14—N2—C13—C12176.3 (6)
C12—C3—C4—C9174.4 (6)O1—C12—C13—N265.2 (7)
C3—C4—C5—C6178.1 (7)C3—C12—C13—N2173.1 (6)
C9—C4—C5—C61.4 (10)O1—C12—C13—C1755.8 (8)
C4—C5—C6—C70.7 (11)C3—C12—C13—C1765.9 (8)
C5—C6—C7—C82.2 (12)C13—N2—C14—C1555.2 (9)
C6—C7—C8—C91.4 (11)N2—C14—C15—C1656.7 (9)
C6—C7—C8—C11178.5 (7)C14—C15—C16—C1757.5 (9)
C1—N1—C9—C41.4 (10)N2—C13—C17—C1652.3 (8)
C1—N1—C9—C8178.0 (6)C12—C13—C17—C16171.1 (6)
C5—C4—C9—N1177.2 (7)C15—C16—C17—C1356.0 (9)
C3—C4—C9—N13.2 (10)Cl2i—Sn—C18—C1937.8 (5)
C5—C4—C9—C82.1 (10)Cl2—Sn—C18—C19142.2 (5)
C3—C4—C9—C8177.4 (6)Cl1i—Sn—C18—C1951.7 (5)
C7—C8—C9—N1178.7 (7)Cl1—Sn—C18—C19128.3 (5)
C11—C8—C9—N14.2 (10)Cl2i—Sn—C18—C23143.9 (5)
C7—C8—C9—C40.7 (10)Cl2—Sn—C18—C2336.1 (5)
C11—C8—C9—C4176.4 (7)Cl1i—Sn—C18—C23126.6 (5)
N1—C1—C10—F1166.8 (7)Cl1—Sn—C18—C2353.4 (5)
C2—C1—C10—F115.1 (10)C23—C18—C19—C200.7 (10)
N1—C1—C10—F272.2 (9)Sn—C18—C19—C20179.1 (5)
C2—C1—C10—F2106.0 (8)C18—C19—C20—C212.0 (11)
N1—C1—C10—F345.4 (9)C19—C20—C21—C222.6 (12)
C2—C1—C10—F3136.4 (7)C20—C21—C22—C231.9 (11)
C7—C8—C11—F5125.8 (8)C21—C22—C23—C180.6 (11)
C9—C8—C11—F557.1 (9)C19—C18—C23—C220.0 (10)
C7—C8—C11—F65.4 (10)Sn—C18—C23—C22178.4 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.922.392.789 (9)106
N2—H1n···Cl1ii0.922.273.166 (7)166
N2—H2n···Cl1iii0.922.673.311 (7)127
O1—H1o···Cl2iv0.842.213.028 (6)167
C20—H20···Cl2v0.952.763.557 (9)142
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z1; (iv) x+2, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C17H17F6N2O)2[Sn(C6H5)2Cl4]
Mr1173.34
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.5578 (4), 9.1479 (7), 15.9866 (11)
α, β, γ (°)104.739 (3), 91.671 (4), 97.622 (4)
V3)1197.06 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.08 × 0.04 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16610, 4164, 3313
Rint0.094
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.198, 1.03
No. of reflections4164
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.61

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—C182.135 (7)Sn—Cl12.6382 (18)
Sn—Cl22.5804 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.922.392.789 (9)106
N2—H1n···Cl1i0.922.273.166 (7)166
N2—H2n···Cl1ii0.922.673.311 (7)127
O1—H1o···Cl2iii0.842.213.028 (6)167
C20—H20···Cl2iv0.952.763.557 (9)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z1; (iii) x+2, y+1, z+1; (iv) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBiot, C., Delhaes, L., Maciejewski, L. A., Mortuaire, M., Camus, D., Dive, D. & Brocard, J. S. (2000). Eur. J. Med. Chem. 35, 707–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCroft, A. M. & Herxheimer, A. (2002). BMC Public Health. Published online 2002 March 25. doi:10.1186/1471-2458-2-6.  Google Scholar
First citationDow, G. S., Koenig, M. L., Wolf, L., Gerena, L., Lopez-Sanchez, M., Hudson, T. H. & Bhattacharjee, A. K. (2004). Antimicrob. Agents Chemother. 48, 2624–2632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKarle, J. M. & Karle, I. L. (1991a). Acta Cryst. C47, 2391–2395.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarle, J. M. & Karle, I. L. (1991b). Antimicrob. Agents Chemother. 35, 2238–2395.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKarle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529–1534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624–1630.  Web of Science PubMed Google Scholar
First citationLima, P. C., Avery, M. A., Tekwani, B. L., Alves, H. De M., Barreiro, E. J. & Fraga, C. A. M. (2002). Farmaco, 57, 825–832.  Google Scholar
First citationMaguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859–868.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoesner, M., Brossi, A. & Silverton, J. V. (1981). Heterocycles, 15, 925–933.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkórska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m336-m337
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds