organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(3-Meth­oxy­phen­yl)-6,6-di­methyl-4-phenyl-2,3,5,6,7,9-hexa­hydro­thieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide

aSchool of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bSchool of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wangsh200912@163.com

(Received 18 January 2010; accepted 29 January 2010; online 6 February 2010)

The title compound, C26H27NO4S, with a thiophene ring fused to a quinoline ring, was synthesized via the condensation of dihydro­thio­phen-3(2H)-one 1,1-dioxide, 5,5-dimethyl-3-(phenyl­amino)cyclo­hex-2-enone and 3-methoxy­benzaldehyde in refluxing ethanol. In the crystal structure, the thiophene dioxide ring and the pyridine ring adopt envelope conformations. The connection of the pyridine ring to the phenyl and benzene rings can be described by the C–C–C–C and C–N–C–C torsion angles of 45.5 (2) and 88.7 (2)°, respectively. The cyclo­hex-2-enone ring is in a half-chair conformation. The crystal packing is stabilized by non-classical inter­molecular C—H⋯O hydrogen bonds with the carbonyl O and sulfone O atoms acting as acceptors.

Related literature

For the use of thienoquinoline compounds as ATP-sensitive potassium channel openers, see: Altenbach et al. (2006[Altenbach, R. J., Brune, M. E., Buckner, S. A., Coghlan, M. J., Daza, A. V., Fabiyi, A., Gopalakrishnan, M., Henry, R. F., Khilevich, A., Kort, M. E., Milicic, I., Scott, V. E., Smith, J. C., Whiteaker, K. L. & Carroll, W. A. (2006). J. Med. Chem. 49, 6869-6887.]); Carroll et al. (1999[Carroll, W. A., Holladay, M. W., Sullivan, J. P., Drizin, I. & Zhang, H. Q. (1999). WO Patent No. 9931059.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27NO4S

  • Mr = 449.55

  • Monoclinic, P 21 /n

  • a = 11.2488 (14) Å

  • b = 14.8013 (18) Å

  • c = 13.3866 (16) Å

  • β = 92.747 (7)°

  • V = 2226.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 113 K

  • 0.20 × 0.14 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.965, Tmax = 0.979

  • 14414 measured reflections

  • 4843 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.04

  • 4843 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1i 0.95 2.53 3.409 (2) 154
C23—H23⋯O3ii 0.95 2.51 3.353 (2) 148
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thienoquinoline compounds, such as thieno[3,2-b]quinoline -1,1-dioxide derivatives, can be uesed as ATP-sensitive Potassium channel opener (Altenbach et al., 2006; Carroll et al., 1999). This led us to pay attention to the synthesis and bioactivity of these compounds. During the synthesis of thieno[3,2-b]quinoline derivatives, the title compound, (I) was isolated and its structure was determined by X-ray diffraction. Here we report its crystal structure.

The molecular structure of (I) is shown in Fig. 1. In this structure, the thiophene ring is in envelope conformation, for the deviation of C20 from the C19/C5/C4/S1 plane is 0.386 (3)Å with r.m.s. of 0.000. The pyridine ring adopts a half-boat conformation. Cremer & Pople puckering analysis (Cremer & Pople, 1975) shows that its Q is 0.186 (2) Å, θ and ϕ are 109.4 (6) and 348.5 (6)°, respectively. The connection of the pyridine ring and phenyl rings (C12—C17 and C21–C26) can be described by the C2–C3–C12–C17 and C5–N1–C21–C26 torsion angles of 45.5 (2)° and 88.7 (2)°, respectively. According to Cremer & Pople puckering parameters of the cyclohex-2-enone ring, it is in a half-chair conformation. Its Q is 0.490 (2) Å, θ and ϕ are 121.4 (2)° and 50.0 (3)°, respectively. The crystal packing is stablized by intermolecular nonclassical C—H···O hydrogen bonds with the carbonyl O and sulphone O atoms respectively acting as acceptors.(Fig.2 & Table 1).

Related literature top

For the use of thienoquinoline compounds as ATP-sensitive potassium channel openers, see: Altenbach et al. (2006); Carroll et al. (1999). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by the reaction of dihydrothiophen-3(2H)-one-1,1-dioxide (1 mmol), 5,5-dimethyl-3-(phenylamino)cyclohex-2-enone (1 mmol) and 3-methoxybenzaldehyde (1 mmol) in 10 ml ethanol under reluxing until completion (monitored by TLC). Cooling the reaction mixture slowly gave single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95, 0.98, 0.99 or 1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
9-(3-Methoxyphenyl)-6,6-dimethyl-4-phenyl-2,3,5,6,7,9- hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide top
Crystal data top
C26H27NO4SF(000) = 952
Mr = 449.55Dx = 1.341 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 6501 reflections
a = 11.2488 (14) Åθ = 2.1–27.9°
b = 14.8013 (18) ŵ = 0.18 mm1
c = 13.3866 (16) ÅT = 113 K
β = 92.747 (7)°Prism, colourless
V = 2226.3 (5) Å30.20 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4843 independent reflections
Radiation source: rotating anode3756 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
Detector resolution: 7.31 pixels mm-1θmax = 27.0°, θmin = 2.1°
ω and ϕ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1818
Tmin = 0.965, Tmax = 0.979l = 1717
14414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
4843 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C26H27NO4SV = 2226.3 (5) Å3
Mr = 449.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.2488 (14) ŵ = 0.18 mm1
b = 14.8013 (18) ÅT = 113 K
c = 13.3866 (16) Å0.20 × 0.14 × 0.12 mm
β = 92.747 (7)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4843 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3756 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.979Rint = 0.042
14414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
4843 reflectionsΔρmin = 0.50 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50415 (4)0.22372 (3)0.24228 (3)0.02432 (15)
O10.67631 (11)0.38885 (9)0.10478 (10)0.0322 (3)
O20.60626 (12)0.26632 (10)0.28274 (10)0.0340 (4)
O30.51009 (13)0.12739 (9)0.22990 (10)0.0362 (4)
O40.82561 (12)0.04112 (9)0.02547 (11)0.0367 (4)
N10.29857 (13)0.34280 (10)0.05766 (10)0.0227 (3)
C10.37176 (16)0.37342 (12)0.02191 (12)0.0204 (4)
C20.49043 (15)0.35533 (11)0.02666 (12)0.0207 (4)
C30.54944 (16)0.28912 (12)0.04180 (12)0.0203 (4)
H30.62500.31660.06400.024*
C40.46602 (16)0.27653 (11)0.13172 (12)0.0203 (4)
C50.35101 (16)0.29912 (12)0.13692 (12)0.0211 (4)
C60.31187 (16)0.42871 (13)0.09903 (12)0.0261 (4)
H6A0.23410.40090.11200.031*
H6B0.29650.49010.07190.031*
C70.38522 (16)0.43672 (13)0.19812 (12)0.0253 (4)
C80.51206 (17)0.46420 (13)0.17341 (13)0.0267 (4)
H8A0.51000.52560.14410.032*
H8B0.56220.46660.23620.032*
C90.56777 (17)0.40077 (12)0.10200 (13)0.0234 (4)
C100.32863 (19)0.50833 (15)0.26286 (14)0.0377 (5)
H10A0.32740.56640.22770.057*
H10B0.37510.51420.32630.057*
H10C0.24700.49030.27610.057*
C110.38867 (18)0.34685 (14)0.25481 (14)0.0322 (5)
H11A0.43390.35440.31870.048*
H11B0.42700.30090.21470.048*
H11C0.30730.32780.26730.048*
C120.57895 (15)0.19902 (12)0.00974 (12)0.0212 (4)
C130.68665 (15)0.15746 (12)0.00304 (13)0.0223 (4)
H130.74370.18600.04250.027*
C140.71314 (17)0.07423 (12)0.04109 (13)0.0260 (4)
C150.63009 (18)0.03180 (13)0.09773 (14)0.0301 (5)
H150.64740.02510.12780.036*
C160.52138 (18)0.07310 (13)0.11024 (14)0.0306 (5)
H160.46400.04410.14900.037*
C170.49544 (17)0.15579 (13)0.06716 (14)0.0272 (4)
H170.42060.18350.07650.033*
C180.8431 (2)0.05287 (14)0.04084 (17)0.0420 (6)
H18A0.83410.06730.11150.063*
H18B0.92330.06960.02200.063*
H18C0.78410.08670.00040.063*
C190.27918 (16)0.27641 (13)0.23133 (13)0.0259 (4)
H19A0.22880.32830.25310.031*
H19B0.22720.22370.22060.031*
C200.36954 (17)0.25471 (14)0.30969 (13)0.0272 (4)
H20A0.38270.30820.35220.033*
H20B0.34060.20430.35300.033*
C210.17165 (15)0.35858 (12)0.06443 (12)0.0191 (4)
C220.12586 (16)0.43661 (12)0.10791 (13)0.0249 (4)
H220.17750.48230.13040.030*
C230.00324 (17)0.44714 (14)0.11823 (14)0.0313 (5)
H230.02940.50060.14770.038*
C240.07112 (17)0.38065 (14)0.08602 (14)0.0310 (5)
H240.15490.38780.09450.037*
C250.02438 (18)0.30363 (14)0.04146 (14)0.0302 (5)
H250.07610.25820.01860.036*
C260.09729 (17)0.29238 (12)0.02991 (13)0.0243 (4)
H260.12960.23970.00140.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (3)0.0268 (3)0.0206 (2)0.0037 (2)0.00181 (18)0.00228 (17)
O10.0230 (8)0.0349 (8)0.0380 (8)0.0037 (6)0.0065 (6)0.0019 (6)
O20.0275 (8)0.0469 (9)0.0284 (7)0.0030 (7)0.0088 (6)0.0039 (6)
O30.0512 (10)0.0241 (8)0.0331 (7)0.0076 (7)0.0011 (6)0.0037 (6)
O40.0319 (8)0.0281 (8)0.0498 (9)0.0111 (6)0.0000 (7)0.0000 (6)
N10.0185 (8)0.0308 (9)0.0186 (7)0.0034 (7)0.0010 (6)0.0043 (6)
C10.0239 (10)0.0198 (9)0.0175 (8)0.0001 (8)0.0004 (7)0.0021 (7)
C20.0239 (10)0.0200 (9)0.0180 (8)0.0002 (8)0.0013 (7)0.0024 (7)
C30.0175 (9)0.0229 (9)0.0205 (8)0.0008 (8)0.0004 (7)0.0013 (7)
C40.0229 (10)0.0201 (9)0.0179 (8)0.0007 (8)0.0009 (7)0.0011 (7)
C50.0233 (10)0.0233 (10)0.0166 (8)0.0001 (8)0.0002 (7)0.0000 (7)
C60.0270 (10)0.0309 (11)0.0200 (9)0.0056 (9)0.0019 (7)0.0029 (7)
C70.0289 (10)0.0285 (10)0.0184 (8)0.0006 (9)0.0011 (7)0.0010 (7)
C80.0335 (11)0.0257 (10)0.0205 (8)0.0053 (9)0.0039 (7)0.0005 (7)
C90.0265 (11)0.0217 (10)0.0219 (8)0.0033 (8)0.0017 (7)0.0071 (7)
C100.0452 (13)0.0437 (13)0.0241 (10)0.0038 (10)0.0005 (9)0.0104 (9)
C110.0328 (11)0.0409 (12)0.0229 (9)0.0069 (10)0.0015 (8)0.0045 (8)
C120.0200 (9)0.0230 (9)0.0203 (8)0.0004 (8)0.0030 (7)0.0004 (7)
C130.0207 (10)0.0237 (10)0.0222 (8)0.0030 (8)0.0016 (7)0.0000 (7)
C140.0281 (10)0.0224 (10)0.0266 (9)0.0040 (9)0.0062 (7)0.0036 (7)
C150.0410 (12)0.0212 (10)0.0272 (9)0.0015 (9)0.0067 (8)0.0030 (7)
C160.0371 (12)0.0283 (11)0.0266 (9)0.0071 (10)0.0019 (8)0.0043 (8)
C170.0240 (10)0.0294 (11)0.0281 (9)0.0008 (9)0.0007 (8)0.0015 (8)
C180.0487 (14)0.0300 (12)0.0463 (13)0.0140 (11)0.0088 (10)0.0000 (10)
C190.0223 (10)0.0343 (11)0.0208 (9)0.0036 (8)0.0027 (7)0.0048 (7)
C200.0294 (11)0.0332 (11)0.0190 (8)0.0032 (9)0.0002 (7)0.0027 (8)
C210.0173 (9)0.0237 (10)0.0161 (8)0.0025 (8)0.0004 (6)0.0023 (7)
C220.0273 (10)0.0244 (10)0.0232 (9)0.0014 (9)0.0024 (7)0.0024 (7)
C230.0300 (11)0.0340 (12)0.0296 (10)0.0097 (10)0.0028 (8)0.0008 (8)
C240.0183 (10)0.0429 (12)0.0319 (10)0.0014 (9)0.0007 (8)0.0072 (9)
C250.0287 (11)0.0360 (12)0.0265 (10)0.0094 (10)0.0073 (8)0.0042 (8)
C260.0284 (11)0.0238 (10)0.0209 (8)0.0010 (8)0.0018 (7)0.0000 (7)
Geometric parameters (Å, º) top
S1—O31.4367 (14)C11—H11B0.9800
S1—O21.4388 (14)C11—H11C0.9800
S1—C41.7453 (17)C12—C131.377 (2)
S1—C201.7851 (19)C12—C171.397 (2)
O1—C91.232 (2)C13—C141.392 (2)
O4—C141.382 (2)C13—H130.9500
O4—C181.419 (2)C14—C151.382 (3)
N1—C11.391 (2)C15—C161.384 (3)
N1—C51.397 (2)C15—H150.9500
N1—C211.445 (2)C16—C171.378 (3)
C1—C21.360 (2)C16—H160.9500
C1—C61.502 (2)C17—H170.9500
C2—C91.464 (2)C18—H18A0.9800
C2—C31.516 (2)C18—H18B0.9800
C3—C41.502 (2)C18—H18C0.9800
C3—C121.531 (2)C19—C201.529 (2)
C3—H31.0000C19—H19A0.9900
C4—C51.335 (2)C19—H19B0.9900
C5—C191.505 (2)C20—H20A0.9900
C6—C71.533 (2)C20—H20B0.9900
C6—H6A0.9900C21—C221.382 (2)
C6—H6B0.9900C21—C261.382 (3)
C7—C101.527 (3)C22—C231.388 (2)
C7—C111.531 (3)C22—H220.9500
C7—C81.535 (3)C23—C241.374 (3)
C8—C91.499 (2)C23—H230.9500
C8—H8A0.9900C24—C251.379 (3)
C8—H8B0.9900C24—H240.9500
C10—H10A0.9800C25—C261.380 (3)
C10—H10B0.9800C25—H250.9500
C10—H10C0.9800C26—H260.9500
C11—H11A0.9800
O3—S1—O2116.41 (8)C7—C11—H11C109.5
O3—S1—C4111.02 (8)H11A—C11—H11C109.5
O2—S1—C4110.86 (8)H11B—C11—H11C109.5
O3—S1—C20110.30 (9)C13—C12—C17118.86 (17)
O2—S1—C20111.73 (9)C13—C12—C3120.42 (15)
C4—S1—C2094.40 (8)C17—C12—C3120.66 (16)
C14—O4—C18116.59 (15)C12—C13—C14120.95 (16)
C1—N1—C5118.46 (14)C12—C13—H13119.5
C1—N1—C21122.83 (14)C14—C13—H13119.5
C5—N1—C21118.62 (14)O4—C14—C15124.72 (17)
C2—C1—N1121.02 (15)O4—C14—C13115.37 (16)
C2—C1—C6123.14 (15)C15—C14—C13119.89 (17)
N1—C1—C6115.82 (15)C14—C15—C16119.33 (18)
C1—C2—C9119.43 (16)C14—C15—H15120.3
C1—C2—C3123.79 (15)C16—C15—H15120.3
C9—C2—C3116.78 (15)C17—C16—C15120.80 (18)
C4—C3—C2106.85 (14)C17—C16—H16119.6
C4—C3—C12111.52 (14)C15—C16—H16119.6
C2—C3—C12112.49 (14)C16—C17—C12120.16 (18)
C4—C3—H3108.6C16—C17—H17119.9
C2—C3—H3108.6C12—C17—H17119.9
C12—C3—H3108.6O4—C18—H18A109.5
C5—C4—C3125.27 (15)O4—C18—H18B109.5
C5—C4—S1110.17 (13)H18A—C18—H18B109.5
C3—C4—S1124.45 (13)O4—C18—H18C109.5
C4—C5—N1121.31 (16)H18A—C18—H18C109.5
C4—C5—C19117.90 (15)H18B—C18—H18C109.5
N1—C5—C19120.79 (15)C5—C19—C20105.97 (15)
C1—C6—C7113.35 (15)C5—C19—H19A110.5
C1—C6—H6A108.9C20—C19—H19A110.5
C7—C6—H6A108.9C5—C19—H19B110.5
C1—C6—H6B108.9C20—C19—H19B110.5
C7—C6—H6B108.9H19A—C19—H19B108.7
H6A—C6—H6B107.7C19—C20—S1106.42 (12)
C10—C7—C11108.85 (15)C19—C20—H20A110.4
C10—C7—C6108.84 (15)S1—C20—H20A110.4
C11—C7—C6111.20 (15)C19—C20—H20B110.4
C10—C7—C8110.82 (16)S1—C20—H20B110.4
C11—C7—C8109.59 (15)H20A—C20—H20B108.6
C6—C7—C8107.54 (14)C22—C21—C26120.93 (17)
C9—C8—C7113.13 (15)C22—C21—N1120.58 (16)
C9—C8—H8A109.0C26—C21—N1118.45 (16)
C7—C8—H8A109.0C21—C22—C23118.96 (17)
C9—C8—H8B109.0C21—C22—H22120.5
C7—C8—H8B109.0C23—C22—H22120.5
H8A—C8—H8B107.8C24—C23—C22120.34 (18)
O1—C9—C2120.68 (16)C24—C23—H23119.8
O1—C9—C8120.96 (16)C22—C23—H23119.8
C2—C9—C8118.34 (16)C23—C24—C25120.17 (18)
C7—C10—H10A109.5C23—C24—H24119.9
C7—C10—H10B109.5C25—C24—H24119.9
H10A—C10—H10B109.5C24—C25—C26120.24 (18)
C7—C10—H10C109.5C24—C25—H25119.9
H10A—C10—H10C109.5C26—C25—H25119.9
H10B—C10—H10C109.5C25—C26—C21119.34 (17)
C7—C11—H11A109.5C25—C26—H26120.3
C7—C11—H11B109.5C21—C26—H26120.3
H11A—C11—H11B109.5
C5—N1—C1—C25.1 (2)C3—C2—C9—O14.0 (2)
C21—N1—C1—C2178.44 (16)C1—C2—C9—C81.6 (2)
C5—N1—C1—C6173.45 (15)C3—C2—C9—C8177.86 (14)
C21—N1—C1—C63.0 (2)C7—C8—C9—O1150.05 (16)
N1—C1—C2—C9169.93 (15)C7—C8—C9—C231.8 (2)
C6—C1—C2—C98.5 (3)C4—C3—C12—C13102.89 (19)
N1—C1—C2—C310.6 (3)C2—C3—C12—C13137.09 (17)
C6—C1—C2—C3170.97 (16)C4—C3—C12—C1774.5 (2)
C1—C2—C3—C419.8 (2)C2—C3—C12—C1745.5 (2)
C9—C2—C3—C4160.73 (14)C17—C12—C13—C140.7 (3)
C1—C2—C3—C12102.88 (19)C3—C12—C13—C14178.12 (16)
C9—C2—C3—C1276.58 (19)C18—O4—C14—C1520.7 (3)
C2—C3—C4—C516.6 (2)C18—O4—C14—C13160.75 (17)
C12—C3—C4—C5106.73 (19)C12—C13—C14—O4177.86 (16)
C2—C3—C4—S1167.50 (12)C12—C13—C14—C150.7 (3)
C12—C3—C4—S169.21 (19)O4—C14—C15—C16178.14 (17)
O3—S1—C4—C5101.22 (14)C13—C14—C15—C160.3 (3)
O2—S1—C4—C5127.76 (13)C14—C15—C16—C170.1 (3)
C20—S1—C4—C512.50 (14)C15—C16—C17—C120.2 (3)
O3—S1—C4—C375.25 (16)C13—C12—C17—C160.2 (3)
O2—S1—C4—C355.77 (17)C3—C12—C17—C16177.65 (17)
C20—S1—C4—C3171.03 (15)C4—C5—C19—C2015.2 (2)
C3—C4—C5—N13.8 (3)N1—C5—C19—C20164.53 (16)
S1—C4—C5—N1179.73 (14)C5—C19—C20—S122.30 (18)
C3—C4—C5—C19176.43 (16)O3—S1—C20—C1993.82 (14)
S1—C4—C5—C190.0 (2)O2—S1—C20—C19135.03 (13)
C1—N1—C5—C48.5 (2)C4—S1—C20—C1920.51 (14)
C21—N1—C5—C4174.82 (16)C1—N1—C21—C2287.6 (2)
C1—N1—C5—C19171.20 (16)C5—N1—C21—C2288.9 (2)
C21—N1—C5—C195.4 (2)C1—N1—C21—C2694.8 (2)
C2—C1—C6—C718.6 (2)C5—N1—C21—C2688.66 (19)
N1—C1—C6—C7162.88 (15)C26—C21—C22—C231.1 (3)
C1—C6—C7—C10169.02 (16)N1—C21—C22—C23176.38 (15)
C1—C6—C7—C1171.1 (2)C21—C22—C23—C240.3 (3)
C1—C6—C7—C848.9 (2)C22—C23—C24—C251.2 (3)
C10—C7—C8—C9174.50 (15)C23—C24—C25—C260.7 (3)
C11—C7—C8—C965.35 (19)C24—C25—C26—C210.7 (3)
C6—C7—C8—C955.65 (19)C22—C21—C26—C251.6 (3)
C1—C2—C9—O1176.51 (16)N1—C21—C26—C25175.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.952.533.409 (2)154
C23—H23···O3ii0.952.513.353 (2)148
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H27NO4S
Mr449.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)11.2488 (14), 14.8013 (18), 13.3866 (16)
β (°) 92.747 (7)
V3)2226.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.14 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.965, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
14414, 4843, 3756
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.04
No. of reflections4843
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.50

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O1i0.952.533.409 (2)153.8
C23—H23···O3ii0.952.513.353 (2)148.3
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of Gansu Province (No. 0916RJZA0500).

References

First citationAltenbach, R. J., Brune, M. E., Buckner, S. A., Coghlan, M. J., Daza, A. V., Fabiyi, A., Gopalakrishnan, M., Henry, R. F., Khilevich, A., Kort, M. E., Milicic, I., Scott, V. E., Smith, J. C., Whiteaker, K. L. & Carroll, W. A. (2006). J. Med. Chem. 49, 6869–6887.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCarroll, W. A., Holladay, M. W., Sullivan, J. P., Drizin, I. & Zhang, H. Q. (1999). WO Patent No. 9931059.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds