organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o533-o534

N-(2-Fluoro­phen­yl)cinnamamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 29 January 2010; accepted 1 February 2010; online 6 February 2010)

The title compound, C15H12FNO, was prepared by the reaction of cinnamoyl chloride with 4-fluoro­aniline and crystallizes with two mol­ecules A and B in the asymmetric unit. The two unique mol­ecules are closely similar and overlay with an r.m.s. deviation of 0.0819 Å. The fluoro­benzene and phenyl rings are inclined to one another at 73.89 (7) and 79.46 (7)°, respectively, in mol­ecules A and B. The amide C—N—C(O)—C portions of the mol­ecules are planar (r.m.s. deviations = 0.035 and 0.028 Å) and are inclined at 45.51 (9) and 47.71 (9), respectively, to the fluoro­benzene rings in mol­ecules A and B. The 2-fluoro­acetamide units and the benzene rings each adopt E configurations with respect to the C=C bonds. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds augmented by weak C—H⋯π inter­actions link mol­ecules into rows in a head-to-tail fashion along a. Additional weak C—H⋯O contacts further stabilize the packing, forming a three-dimensional network stacked down a.

Related literature

For related structures see: Leiserowitz & Tuval (1978[Leiserowitz, L. & Tuval, M. (1978). Acta Cryst. B34, 1230-1247.]); Nilofar Nissa et al. (2002[Nilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, D., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. pp. 125-133.], 2004[Nilofar Nissa, M., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. pp. 643-649.]); Jones & Dix (2008[Jones, P. G. & Dix, I. (2008). Private communication to the Cambridge Structural Database (deposition No. 694529; refcode DOTPOS). CCDC, Union Road, Cambridge, England]); Saeed et al. (2009[Saeed, A., Khera, R. A., Shahid, M. & Parvez, M. (2009). Acta Cryst. E65, o2068.]). For details of the Cambridge Structural Database: see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FNO

  • Mr = 241.26

  • Monoclinic, P 21 /c

  • a = 9.6634 (12) Å

  • b = 13.0838 (17) Å

  • c = 19.404 (3) Å

  • β = 99.297 (7)°

  • V = 2421.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 89 K

  • 0.64 × 0.30 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.696, Tmax = 1.000

  • 24964 measured reflections

  • 4376 independent reflections

  • 3312 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.156

  • S = 1.07

  • 4376 reflections

  • 331 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

CgA and CgB are the centroids of the fluoro­benzene rings in mol­ecules A and B respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1B 0.88 (3) 1.98 (3) 2.851 (2) 173 (2)
N1B—H1NB⋯O1Ai 0.81 (3) 2.07 (3) 2.870 (2) 170 (2)
C14A—H14A⋯O1Aii 0.95 2.50 3.410 (3) 160
C14B—H14B⋯O1Biii 0.95 2.59 3.476 (3) 155
C9B—H9BCgAiv 0.95 2.89 3.679 (2) 141
C5A—H5ACgBv 0.95 2.80 3.621 (2) 149
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The background to this work has been described in a previous paper (Saeed et al. 2009). The title compound, C15H12FNO (I), was prepared by the reaction of cinnamoyl chloride with 4-fluoroaniline. The compound crystallises with two molecules A and B in the asymmetric unit of the monoclinic unit cell. These two unique molecules are closely similar and overlay with an rms deviation of 0.0819Å (Macrae et al., 2008). The fluorobenzene and benzene rings are inclined at 73.89 (7)° and 79.46 (7)° respectively in the two molecules. The amide C10–N1–C1(O1)–C2 portions of the molecules are planar (rms deviations 0.035 and 0.028 Å) and are inclined at 45.51 (9)° and 47.71 (9) respectively to the fluorobenzene rings. The 2-fluoroacetamide units and the benzene rings each adopt E configurations with respect to the CC bonds. A search of the Cambridge Database (Allen, 2002) reveals only one closely related halobenzene derivative (Nilofar Nissa et al., 2004) but the structures of a number of other cinnamanilide compounds are known (Leiserowitz & Tuval 1978; Nilofar Nissa et al., 2002; Jones & Dix, 2008; Saeed et al., 2009).

In the crystal structure, intermolecular N1A—H1NA···O1B and N1B—H1NB···O1A hydrogen bonds, augmented by weak C–H···π interactions involving the two fluorobenzene rings, link molecules into rows along a, Fig. 2. Additional weak C—H···O contacts further stabilise the packing, forming a three-dimensional network stacked down a, Table 1 & Fig. 3.

Related literature top

For related structures see: Leiserowitz & Tuval (1978); Nilofar Nissa et al. (2002, 2004); Jones & Dix (2008); Saeed et al. (2009). For details of the Cambridge Structural Database: see Allen (2002).

Experimental top

Cinnamoyl chloride (5.4 mmol) in CHCl3 was treated with 4-fluoroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 2 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aqueous 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (87%) as colourless needles: Anal. calcd. for C15H12FNO,: C, 74.67; H, 5.01; N, 5.81%; found: C, 74.69; H, 5.16; N, 5.94%.

Refinement top

The H atoms bound to N1A and N1B were located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. N—H···O hydrogen bonds (dashed lines) and weak C–H···π interactions (dotted lines) forming chains down b.
[Figure 3] Fig. 3. Crystal packing for (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.
N-(2-Fluorophenyl)cinnamamide top
Crystal data top
C15H12FNOF(000) = 1008
Mr = 241.26Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5945 reflections
a = 9.6634 (12) Åθ = 2.6–25.1°
b = 13.0838 (17) ŵ = 0.09 mm1
c = 19.404 (3) ÅT = 89 K
β = 99.297 (7)°Block, pale yellow
V = 2421.0 (5) Å30.64 × 0.30 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4376 independent reflections
Radiation source: fine-focus sealed tube3312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1111
Tmin = 0.696, Tmax = 1.000k = 1515
24964 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0869P)2 + 1.0345P]
where P = (Fo2 + 2Fc2)/3
4376 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H12FNOV = 2421.0 (5) Å3
Mr = 241.26Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.6634 (12) ŵ = 0.09 mm1
b = 13.0838 (17) ÅT = 89 K
c = 19.404 (3) Å0.64 × 0.30 × 0.16 mm
β = 99.297 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
4376 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3312 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 1.000Rint = 0.068
24964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
4376 reflectionsΔρmin = 0.36 e Å3
331 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.2567 (2)0.71300 (15)0.02767 (10)0.0190 (4)
H1NA0.342 (3)0.735 (2)0.0245 (12)0.023*
C1A0.1444 (2)0.75857 (17)0.01166 (11)0.0177 (5)
O1A0.02319 (15)0.72730 (12)0.01255 (8)0.0220 (4)
C2A0.1794 (2)0.85024 (17)0.04971 (11)0.0181 (5)
H2A0.27250.85960.05850.022*
C3A0.0817 (2)0.92016 (18)0.07189 (11)0.0199 (5)
H3A0.01050.90480.06390.024*
C4A0.0985 (2)1.01740 (18)0.10691 (11)0.0191 (5)
C5A0.0136 (2)1.08608 (18)0.11720 (12)0.0229 (5)
H5A0.09911.06850.10190.027*
C6A0.0017 (3)1.18006 (19)0.14953 (12)0.0251 (6)
H6A0.07921.22570.15640.030*
C7A0.1223 (3)1.20718 (19)0.17169 (12)0.0245 (5)
H7A0.13031.27120.19380.029*
C8A0.2356 (2)1.13992 (19)0.16129 (11)0.0235 (5)
H8A0.32141.15860.17590.028*
C9A0.2240 (2)1.04614 (18)0.12984 (11)0.0212 (5)
H9A0.30151.00060.12360.025*
C10A0.2461 (2)0.63122 (17)0.07449 (12)0.0179 (5)
C11A0.3173 (2)0.63675 (17)0.14283 (12)0.0201 (5)
F1A0.39762 (14)0.72109 (10)0.16188 (7)0.0294 (4)
C12A0.3107 (2)0.56122 (19)0.19135 (12)0.0244 (5)
H12A0.36040.56760.23760.029*
C13A0.2297 (2)0.47516 (19)0.17133 (12)0.0241 (5)
H13A0.22310.42220.20410.029*
C14A0.1585 (2)0.46671 (18)0.10335 (12)0.0216 (5)
H14A0.10410.40750.08960.026*
C15A0.1665 (2)0.54433 (17)0.05545 (12)0.0194 (5)
H15A0.11690.53800.00920.023*
N1B0.7349 (2)0.79010 (15)0.03553 (10)0.0187 (4)
H1NB0.814 (3)0.769 (2)0.0341 (13)0.022*
C1B0.6485 (2)0.74513 (17)0.00412 (11)0.0170 (5)
O1B0.52817 (15)0.77646 (12)0.00522 (8)0.0216 (4)
C2B0.7098 (2)0.65447 (17)0.04371 (11)0.0177 (5)
H2B0.80860.64520.05190.021*
C3B0.6277 (2)0.58575 (17)0.06798 (11)0.0184 (5)
H3B0.52990.59940.05940.022*
C4B0.6714 (2)0.49131 (18)0.10655 (11)0.0182 (5)
C5B0.8115 (2)0.47122 (19)0.13481 (12)0.0232 (5)
H5B0.88190.51980.12930.028*
C6B0.8485 (3)0.3814 (2)0.17071 (12)0.0273 (6)
H6B0.94390.36890.18970.033*
C7B0.7465 (3)0.30895 (19)0.17912 (12)0.0276 (6)
H7B0.77230.24700.20340.033*
C8B0.6072 (3)0.32802 (19)0.15172 (12)0.0262 (6)
H8B0.53710.27930.15750.031*
C9B0.5701 (2)0.41858 (18)0.11572 (11)0.0216 (5)
H9B0.47450.43110.09710.026*
C10B0.6938 (2)0.87171 (17)0.08218 (11)0.0173 (5)
C11B0.7185 (2)0.86597 (18)0.15059 (12)0.0225 (5)
F1B0.78197 (16)0.78076 (11)0.17040 (7)0.0351 (4)
C12B0.6818 (2)0.9429 (2)0.19871 (12)0.0270 (6)
H12B0.69970.93640.24520.032*
C13B0.6180 (2)1.02988 (19)0.17770 (12)0.0246 (5)
H13B0.59181.08370.21000.029*
C14B0.5924 (2)1.03851 (18)0.10960 (12)0.0226 (5)
H14B0.54901.09830.09540.027*
C15B0.6303 (2)0.95959 (17)0.06203 (12)0.0195 (5)
H15B0.61260.96600.01550.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0104 (9)0.0186 (11)0.0287 (10)0.0008 (7)0.0050 (8)0.0038 (8)
C1A0.0135 (11)0.0178 (12)0.0221 (11)0.0005 (9)0.0041 (8)0.0030 (9)
O1A0.0112 (8)0.0213 (9)0.0336 (9)0.0002 (6)0.0035 (6)0.0019 (7)
C2A0.0113 (10)0.0205 (12)0.0229 (11)0.0017 (9)0.0041 (8)0.0005 (10)
C3A0.0130 (11)0.0206 (12)0.0263 (11)0.0028 (9)0.0038 (8)0.0009 (10)
C4A0.0164 (11)0.0199 (12)0.0204 (11)0.0013 (9)0.0014 (8)0.0009 (9)
C5A0.0169 (11)0.0238 (13)0.0277 (12)0.0015 (10)0.0029 (9)0.0015 (11)
C6A0.0250 (13)0.0222 (13)0.0271 (12)0.0051 (10)0.0006 (10)0.0016 (10)
C7A0.0327 (14)0.0178 (13)0.0222 (12)0.0017 (10)0.0015 (10)0.0012 (10)
C8A0.0213 (12)0.0274 (14)0.0222 (11)0.0066 (10)0.0046 (9)0.0001 (10)
C9A0.0160 (11)0.0238 (13)0.0233 (11)0.0007 (9)0.0020 (9)0.0001 (10)
C10A0.0092 (10)0.0185 (12)0.0273 (12)0.0032 (8)0.0072 (8)0.0016 (10)
C11A0.0157 (11)0.0159 (12)0.0288 (12)0.0005 (9)0.0037 (9)0.0022 (10)
F1A0.0282 (8)0.0204 (8)0.0366 (8)0.0063 (6)0.0036 (6)0.0016 (6)
C12A0.0248 (13)0.0236 (13)0.0242 (12)0.0040 (10)0.0024 (9)0.0009 (10)
C13A0.0231 (12)0.0198 (13)0.0306 (13)0.0036 (10)0.0080 (10)0.0067 (10)
C14A0.0171 (11)0.0167 (12)0.0327 (13)0.0005 (9)0.0094 (9)0.0009 (10)
C15A0.0137 (11)0.0196 (13)0.0256 (12)0.0009 (9)0.0052 (9)0.0003 (10)
N1B0.0106 (9)0.0186 (11)0.0275 (10)0.0030 (8)0.0052 (8)0.0026 (8)
C1B0.0134 (11)0.0169 (12)0.0206 (11)0.0013 (9)0.0024 (8)0.0041 (9)
O1B0.0112 (8)0.0215 (9)0.0331 (9)0.0014 (6)0.0063 (6)0.0022 (7)
C2B0.0124 (10)0.0204 (12)0.0202 (11)0.0019 (9)0.0026 (8)0.0021 (9)
C3B0.0136 (11)0.0195 (12)0.0222 (11)0.0020 (9)0.0034 (8)0.0017 (10)
C4B0.0165 (11)0.0216 (13)0.0178 (11)0.0021 (9)0.0062 (8)0.0020 (9)
C5B0.0203 (12)0.0259 (14)0.0245 (12)0.0008 (10)0.0071 (9)0.0037 (10)
C6B0.0230 (13)0.0332 (15)0.0264 (12)0.0073 (11)0.0064 (10)0.0067 (11)
C7B0.0350 (14)0.0224 (14)0.0264 (12)0.0060 (11)0.0085 (10)0.0046 (10)
C8B0.0309 (14)0.0212 (13)0.0279 (12)0.0049 (10)0.0089 (10)0.0007 (11)
C9B0.0205 (12)0.0206 (13)0.0241 (11)0.0006 (9)0.0046 (9)0.0018 (10)
C10B0.0106 (10)0.0162 (12)0.0246 (11)0.0028 (8)0.0010 (8)0.0018 (9)
C11B0.0180 (12)0.0197 (13)0.0311 (12)0.0002 (9)0.0082 (9)0.0026 (10)
F1B0.0483 (10)0.0259 (8)0.0356 (8)0.0089 (7)0.0202 (7)0.0006 (7)
C12B0.0280 (13)0.0281 (14)0.0254 (12)0.0025 (10)0.0058 (10)0.0028 (11)
C13B0.0194 (12)0.0208 (13)0.0323 (13)0.0034 (9)0.0009 (9)0.0092 (11)
C14B0.0145 (11)0.0174 (12)0.0352 (13)0.0007 (9)0.0020 (9)0.0005 (10)
C15B0.0137 (11)0.0191 (12)0.0259 (11)0.0019 (9)0.0038 (9)0.0005 (10)
Geometric parameters (Å, º) top
N1A—C1A1.360 (3)N1B—C1B1.357 (3)
N1A—C10A1.418 (3)N1B—C10B1.414 (3)
N1A—H1NA0.88 (3)N1B—H1NB0.81 (3)
C1A—O1A1.238 (3)C1B—O1B1.237 (3)
C1A—C2A1.476 (3)C1B—C2B1.483 (3)
C2A—C3A1.335 (3)C2B—C3B1.334 (3)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.464 (3)C3B—C4B1.471 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.397 (3)C4B—C9B1.397 (3)
C4A—C9A1.408 (3)C4B—C5B1.401 (3)
C5A—C6A1.394 (3)C5B—C6B1.384 (3)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.384 (3)C6B—C7B1.396 (4)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.393 (3)C7B—C8B1.388 (3)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.383 (3)C8B—C9B1.393 (3)
C8A—H8A0.9500C8B—H8B0.9500
C9A—H9A0.9500C9B—H9B0.9500
C10A—C15A1.389 (3)C10B—C11B1.388 (3)
C10A—C11A1.393 (3)C10B—C15B1.389 (3)
C11A—F1A1.365 (3)C11B—F1B1.358 (3)
C11A—C12A1.373 (3)C11B—C12B1.380 (3)
C12A—C13A1.390 (3)C12B—C13B1.386 (4)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.390 (3)C13B—C14B1.388 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.387 (3)C14B—C15B1.394 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C1A—N1A—C10A123.83 (19)C1B—N1B—C10B123.75 (19)
C1A—N1A—H1NA119.1 (16)C1B—N1B—H1NB119.8 (19)
C10A—N1A—H1NA117.1 (16)C10B—N1B—H1NB116.4 (19)
O1A—C1A—N1A122.1 (2)O1B—C1B—N1B122.1 (2)
O1A—C1A—C2A123.66 (19)O1B—C1B—C2B123.6 (2)
N1A—C1A—C2A114.22 (19)N1B—C1B—C2B114.22 (19)
C3A—C2A—C1A120.7 (2)C3B—C2B—C1B120.8 (2)
C3A—C2A—H2A119.6C3B—C2B—H2B119.6
C1A—C2A—H2A119.6C1B—C2B—H2B119.6
C2A—C3A—C4A128.3 (2)C2B—C3B—C4B127.4 (2)
C2A—C3A—H3A115.9C2B—C3B—H3B116.3
C4A—C3A—H3A115.9C4B—C3B—H3B116.3
C5A—C4A—C9A118.1 (2)C9B—C4B—C5B118.4 (2)
C5A—C4A—C3A118.9 (2)C9B—C4B—C3B119.18 (19)
C9A—C4A—C3A123.0 (2)C5B—C4B—C3B122.5 (2)
C6A—C5A—C4A120.9 (2)C6B—C5B—C4B120.8 (2)
C6A—C5A—H5A119.6C6B—C5B—H5B119.6
C4A—C5A—H5A119.6C4B—C5B—H5B119.6
C7A—C6A—C5A120.3 (2)C5B—C6B—C7B120.4 (2)
C7A—C6A—H6A119.8C5B—C6B—H6B119.8
C5A—C6A—H6A119.8C7B—C6B—H6B119.8
C6A—C7A—C8A119.5 (2)C8B—C7B—C6B119.5 (2)
C6A—C7A—H7A120.2C8B—C7B—H7B120.2
C8A—C7A—H7A120.2C6B—C7B—H7B120.2
C9A—C8A—C7A120.4 (2)C7B—C8B—C9B120.0 (2)
C9A—C8A—H8A119.8C7B—C8B—H8B120.0
C7A—C8A—H8A119.8C9B—C8B—H8B120.0
C8A—C9A—C4A120.8 (2)C8B—C9B—C4B120.9 (2)
C8A—C9A—H9A119.6C8B—C9B—H9B119.5
C4A—C9A—H9A119.6C4B—C9B—H9B119.5
C15A—C10A—C11A117.6 (2)C11B—C10B—C15B117.8 (2)
C15A—C10A—N1A122.8 (2)C11B—C10B—N1B119.8 (2)
C11A—C10A—N1A119.7 (2)C15B—C10B—N1B122.4 (2)
F1A—C11A—C12A118.89 (19)F1B—C11B—C12B119.1 (2)
F1A—C11A—C10A118.1 (2)F1B—C11B—C10B118.1 (2)
C12A—C11A—C10A123.0 (2)C12B—C11B—C10B122.8 (2)
C11A—C12A—C13A118.5 (2)C11B—C12B—C13B118.6 (2)
C11A—C12A—H12A120.7C11B—C12B—H12B120.7
C13A—C12A—H12A120.7C13B—C12B—H12B120.7
C14A—C13A—C12A120.0 (2)C12B—C13B—C14B120.2 (2)
C14A—C13A—H13A120.0C12B—C13B—H13B119.9
C12A—C13A—H13A120.0C14B—C13B—H13B119.9
C15A—C14A—C13A120.3 (2)C13B—C14B—C15B120.1 (2)
C15A—C14A—H14A119.8C13B—C14B—H14B119.9
C13A—C14A—H14A119.8C15B—C14B—H14B119.9
C14A—C15A—C10A120.6 (2)C10B—C15B—C14B120.5 (2)
C14A—C15A—H15A119.7C10B—C15B—H15B119.7
C10A—C15A—H15A119.7C14B—C15B—H15B119.7
Hydrogen-bond geometry (Å, º) top
CgA and CgB are the centroids of the fluorobenzene rings in molecules A and B respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1B0.88 (3)1.98 (3)2.851 (2)173 (2)
N1B—H1NB···O1Ai0.81 (3)2.07 (3)2.870 (2)170 (2)
C14A—H14A···O1Aii0.952.503.410 (3)160
C14B—H14B···O1Biii0.952.593.476 (3)155
C9B—H9B···CgAiv0.952.893.679 (2)141
C5A—H5A···CgBv0.952.803.621 (2)149
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12FNO
Mr241.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)9.6634 (12), 13.0838 (17), 19.404 (3)
β (°) 99.297 (7)
V3)2421.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.30 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.696, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24964, 4376, 3312
Rint0.068
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.156, 1.07
No. of reflections4376
No. of parameters331
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
CgA and CgB are the centroids of the fluorobenzene rings in molecules A and B respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1B0.88 (3)1.98 (3)2.851 (2)173 (2)
N1B—H1NB···O1Ai0.81 (3)2.07 (3)2.870 (2)170 (2)
C14A—H14A···O1Aii0.952.503.410 (3)159.8
C14B—H14B···O1Biii0.952.593.476 (3)154.9
C9B—H9B···CgAiv0.952.893.679 (2)141.0
C5A—H5A···CgBv0.952.803.621 (2)149.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan under project No. 20-Miscel/R&D/00/3834. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJones, P. G. & Dix, I. (2008). Private communication to the Cambridge Structural Database (deposition No. 694529; refcode DOTPOS). CCDC, Union Road, Cambridge, England  Google Scholar
First citationLeiserowitz, L. & Tuval, M. (1978). Acta Cryst. B34, 1230–1247.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNilofar Nissa, M., Aravindan, P. G., Kasinath, V., Gopalakrishnan, G., Merazig, H. & Velmurugan, D. (2004). Cryst. Res. Technol. pp. 643–649.  CSD CrossRef Google Scholar
First citationNilofar Nissa, M., Velmurugan, D., Shanmuga Sundara Raj, D., Fun, H.-K., Kasinath, V. & Gopalakrishnan, G. (2002). Cryst. Res. Technol. pp. 125–133.  CSD CrossRef Google Scholar
First citationSaeed, A., Khera, R. A., Shahid, M. & Parvez, M. (2009). Acta Cryst. E65, o2068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o533-o534
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds