metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1-ethyl-1H-imidazole-κN3)bis­­(thio­cyanato-κN)cadmium(II)

aSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*Correspondence e-mail: lirongxun163@163.com

(Received 8 February 2010; accepted 8 February 2010; online 13 February 2010)

The structure of the title compound, [Cd(NCS)2(C5H8N2)4], consists of isolated mol­ecules of [Cd(NCS)2(Eim)4] (Eim = 1-ethyl­imidazole), which contain a compressed octa­hedral CdN6 chromophore. The NCS anions are trans and four N atoms from the 1-ethyl­imidazole ligands define the equatorial plane. The mean Cd—N(Eim) and Cd—N(NCS) distances are 2.334 (4) and 2.379 (5) Å, respectively. Weak C—H⋯N inter­actions contribute to the crystal packing stability.

Related literature

In the related cadmium compound [Cd(NCS)2(1-vinyl­imidazole)4], the CdII ions have a distorted octa­hedral environment, see: Liu et al. (2007[Liu, G. Y., Chen, H. N., Liu, F. Q., Li, S. X., Li, R. X. & Huang, S. Y. (2007). Chin. J. Inorg. Chem. 23, 1085-1088.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C5H8N2)4]

  • Mr = 613.13

  • Triclinic, [P \overline 1]

  • a = 9.0580 (18) Å

  • b = 13.532 (3) Å

  • c = 13.571 (3) Å

  • α = 69.45 (3)°

  • β = 70.88 (3)°

  • γ = 89.02 (3)°

  • V = 1462.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.838

  • 6087 measured reflections

  • 5708 independent reflections

  • 4412 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.150

  • S = 1.00

  • 5708 reflections

  • 321 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯N1 0.93 2.81 3.324 (8) 116
C8—H8A⋯N2 0.93 2.72 3.279 (8) 119
C3—H3A⋯N5 0.93 2.97 3.346 (7) 106
C5—H5A⋯N1i 0.93 2.98 3.873 (8) 162
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecular structure of (I) is shown in Fig. 1. The Cd atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-ethylimidazole ligands. The equatorial plane of the complex is formed by four Cd—N(1-ethylimadazole) bonds with lengths ranging from 2.331 (4) to 2.339 (4) Å, and the axial positions are occupied by two N-bonded NCS groups [Cd—N(NCS) = 2.369 (5) and 2.389 (4) Å]. These values agree well with those observed in [Cd(NCS)2(1-vinylimidazole)4] (Liu et al., 2007). The values of the bond angles around cadmium are close to those expected for a regular octahedral geometry, the largest angular deviation being observed for the N3—Cd1—N9 angle [94.22 (12)°]. The thiocyanate ligands are almost linear. Weak C—H···N interactions contribute to the crystal packing stability.

In the corresponding cadmium compound [Cd(NCS)2(1-vinylimidazole)4] (Liu, et al., 2007), the CdII ions have a distorted octahedral environment.

Related literature top

In the corresponding cadmium compound [Cd(NCS)2(1-vinylimidazole)4], the CdII ions have a distorted octahedral environment, see: Liu et al. (2007).

Experimental top

The title compound was prepared by the reaction of 1-ethylimidazole (1.92 g, 20 mmol) with CdCl2.0.5H2O(1.14 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 383 K for 24 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

H atoms were positioned geometrically(C—H = 0.93-0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis.
Tetrakis(1-ethyl-1H-imidazole-κN3)bis(thiocyanato- κN)cadmium(II) top
Crystal data top
[Cd(NCS)2(C5H8N2)4]Z = 2
Mr = 613.13F(000) = 628
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0580 (18) ÅCell parameters from 3229 reflections
b = 13.532 (3) Åθ = 1.6–26.0°
c = 13.571 (3) ŵ = 0.92 mm1
α = 69.45 (3)°T = 293 K
β = 70.88 (3)°Block, colorless
γ = 89.02 (3)°0.30 × 0.30 × 0.20 mm
V = 1462.6 (7) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5708 independent reflections
Radiation source: fine-focus sealed tube4412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
thin–slice ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 011
Tmin = 0.770, Tmax = 0.838k = 1616
6087 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5708 reflectionsΔρmax = 0.87 e Å3
321 parametersΔρmin = 0.85 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (3)
Crystal data top
[Cd(NCS)2(C5H8N2)4]γ = 89.02 (3)°
Mr = 613.13V = 1462.6 (7) Å3
Triclinic, P1Z = 2
a = 9.0580 (18) ÅMo Kα radiation
b = 13.532 (3) ŵ = 0.92 mm1
c = 13.571 (3) ÅT = 293 K
α = 69.45 (3)°0.30 × 0.30 × 0.20 mm
β = 70.88 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5708 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4412 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.838Rint = 0.024
6087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.00Δρmax = 0.87 e Å3
5708 reflectionsΔρmin = 0.85 e Å3
321 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.69564 (4)0.74519 (2)0.74788 (3)0.05176 (18)
S10.8813 (2)0.38753 (12)0.83690 (15)0.0894 (5)
S20.5096 (2)1.10420 (12)0.64503 (16)0.0908 (5)
N70.9399 (5)0.8103 (3)0.7377 (3)0.0619 (10)
N30.4588 (5)0.6765 (3)0.7552 (3)0.0598 (10)
N50.8071 (5)0.7265 (3)0.5749 (3)0.0589 (9)
N81.1286 (5)0.8430 (3)0.7960 (3)0.0577 (9)
N40.2773 (5)0.6417 (4)0.6931 (4)0.0695 (11)
N10.7430 (6)0.5694 (4)0.8445 (4)0.0744 (12)
C10.7999 (5)0.4933 (4)0.8406 (4)0.0549 (10)
N90.5902 (5)0.7659 (3)0.9200 (3)0.0600 (9)
N20.6550 (6)0.9207 (4)0.6501 (4)0.0780 (12)
C20.5964 (6)0.9977 (4)0.6467 (4)0.0578 (11)
C130.9874 (6)0.7894 (4)0.8245 (4)0.0640 (12)
H13A0.93040.74330.89660.077*
N60.9110 (5)0.7726 (3)0.3931 (3)0.0664 (11)
C200.5788 (7)0.8579 (4)0.9399 (5)0.0712 (13)
H20A0.59140.92550.88580.085*
C151.0593 (6)0.8803 (4)0.6491 (4)0.0647 (12)
H15A1.05930.91070.57610.078*
C180.5643 (6)0.6902 (4)1.0195 (4)0.0661 (12)
H18A0.56540.61831.03130.079*
C80.8485 (7)0.8045 (4)0.4788 (4)0.0689 (13)
H8A0.83590.87490.47070.083*
C100.8447 (7)0.6377 (4)0.5496 (4)0.0682 (13)
H10A0.82780.56870.60170.082*
C50.3418 (7)0.6026 (4)0.8429 (5)0.0692 (13)
H5A0.33980.57300.91640.083*
C141.1764 (6)0.8981 (4)0.6839 (4)0.0668 (13)
H14A1.27160.94010.63960.080*
C90.9098 (7)0.6655 (4)0.4379 (4)0.0740 (15)
H9A0.94650.62050.39900.089*
C40.2306 (7)0.5801 (4)0.8049 (5)0.0761 (15)
H4A0.14040.53230.84650.091*
C30.4137 (6)0.6964 (4)0.6684 (4)0.0676 (13)
H3A0.47090.74370.59700.081*
N100.5365 (5)0.7290 (4)1.1004 (3)0.0689 (11)
C161.2126 (7)0.8384 (5)0.8732 (5)0.0717 (14)
H16A1.20210.76560.92420.086*
H16B1.32350.86030.83050.086*
C60.1968 (8)0.6455 (6)0.6151 (6)0.094 (2)
H6A0.09070.61040.65730.113*
H6B0.18930.71910.57380.113*
C190.5463 (7)0.8359 (5)1.0506 (5)0.0770 (15)
H19A0.53320.88491.08580.092*
C110.9731 (8)0.8412 (5)0.2743 (4)0.0855 (18)
H11A0.97490.79910.22910.103*
H11B0.90320.89530.25930.103*
C70.2747 (9)0.5958 (6)0.5366 (6)0.112 (2)
H7A0.23650.61830.47490.168*
H7B0.25350.52000.57330.168*
H7C0.38600.61590.50940.168*
C171.1544 (10)0.9058 (6)0.9382 (6)0.108 (2)
H17A1.19840.88980.99680.162*
H17B1.04180.89280.97060.162*
H17C1.18460.97900.89010.162*
C210.5084 (9)0.6655 (6)1.2194 (5)0.101 (2)
H21A0.41950.68861.26590.121*
H21B0.48250.59141.23360.121*
C220.6465 (10)0.6764 (7)1.2495 (7)0.124 (3)
H22A0.62310.63721.32800.186*
H22B0.67430.75001.23320.186*
H22C0.73270.64921.20710.186*
C121.1279 (9)0.8917 (6)0.2418 (6)0.128 (3)
H12A1.16160.93740.16430.192*
H12B1.19890.83870.25240.192*
H12C1.12720.93290.28680.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0538 (2)0.0523 (2)0.0494 (2)0.00817 (14)0.01671 (15)0.01999 (15)
S10.0938 (11)0.0607 (8)0.0959 (11)0.0180 (8)0.0099 (9)0.0294 (8)
S20.1011 (12)0.0581 (8)0.1125 (12)0.0222 (8)0.0405 (10)0.0274 (8)
N70.056 (2)0.067 (2)0.060 (2)0.0033 (19)0.0172 (19)0.022 (2)
N30.060 (2)0.061 (2)0.060 (2)0.0050 (19)0.0202 (19)0.0252 (19)
N50.065 (2)0.061 (2)0.051 (2)0.0095 (19)0.0187 (18)0.0218 (18)
N80.055 (2)0.064 (2)0.056 (2)0.0100 (18)0.0183 (18)0.0246 (19)
N40.059 (2)0.088 (3)0.074 (3)0.008 (2)0.025 (2)0.042 (2)
N10.083 (3)0.067 (3)0.068 (3)0.023 (2)0.024 (2)0.021 (2)
C10.054 (3)0.051 (3)0.046 (2)0.002 (2)0.0098 (19)0.0088 (19)
N90.059 (2)0.065 (2)0.057 (2)0.0081 (18)0.0157 (18)0.0280 (19)
N20.092 (3)0.064 (3)0.080 (3)0.023 (2)0.036 (3)0.024 (2)
C20.065 (3)0.050 (3)0.051 (2)0.002 (2)0.021 (2)0.008 (2)
C130.062 (3)0.069 (3)0.057 (3)0.003 (2)0.021 (2)0.016 (2)
N60.081 (3)0.064 (3)0.051 (2)0.000 (2)0.019 (2)0.0190 (19)
C200.081 (4)0.064 (3)0.070 (3)0.010 (3)0.020 (3)0.030 (3)
C150.065 (3)0.064 (3)0.057 (3)0.001 (2)0.020 (2)0.013 (2)
C180.070 (3)0.069 (3)0.060 (3)0.008 (2)0.022 (2)0.024 (3)
C80.096 (4)0.054 (3)0.056 (3)0.010 (3)0.025 (3)0.021 (2)
C100.085 (4)0.059 (3)0.060 (3)0.003 (3)0.023 (3)0.022 (2)
C50.075 (3)0.061 (3)0.068 (3)0.005 (3)0.021 (3)0.021 (2)
C140.062 (3)0.063 (3)0.069 (3)0.004 (2)0.022 (3)0.017 (2)
C90.094 (4)0.074 (4)0.064 (3)0.017 (3)0.026 (3)0.038 (3)
C40.069 (3)0.071 (3)0.080 (4)0.004 (3)0.018 (3)0.025 (3)
C30.056 (3)0.083 (4)0.063 (3)0.004 (3)0.020 (2)0.028 (3)
N100.068 (3)0.086 (3)0.054 (2)0.006 (2)0.019 (2)0.028 (2)
C160.067 (3)0.079 (4)0.083 (4)0.014 (3)0.039 (3)0.034 (3)
C60.078 (4)0.134 (6)0.104 (5)0.023 (4)0.046 (4)0.070 (5)
C190.086 (4)0.082 (4)0.074 (4)0.015 (3)0.024 (3)0.044 (3)
C110.101 (5)0.097 (4)0.048 (3)0.001 (4)0.019 (3)0.021 (3)
C70.123 (6)0.141 (7)0.108 (5)0.023 (5)0.056 (5)0.072 (5)
C170.141 (7)0.128 (6)0.101 (5)0.049 (5)0.075 (5)0.066 (5)
C210.114 (6)0.134 (6)0.051 (3)0.016 (5)0.027 (3)0.030 (4)
C220.134 (7)0.160 (8)0.119 (6)0.065 (6)0.075 (6)0.071 (6)
C120.121 (6)0.144 (7)0.087 (5)0.055 (5)0.006 (4)0.028 (5)
Geometric parameters (Å, º) top
Cd1—N32.311 (4)C10—C91.345 (7)
Cd1—N92.331 (4)C10—H10A0.9300
Cd1—N52.334 (4)C5—C41.354 (8)
Cd1—N72.339 (4)C5—H5A0.9300
Cd1—N22.370 (5)C14—H14A0.9300
Cd1—N12.389 (4)C9—H9A0.9300
S1—C11.608 (5)C4—H4A0.9300
S2—C21.627 (5)C3—H3A0.9300
N7—C131.322 (6)N10—C191.356 (7)
N7—C151.377 (6)N10—C211.474 (7)
N3—C31.310 (6)C16—C171.460 (8)
N3—C51.383 (7)C16—H16A0.9700
N5—C81.296 (6)C16—H16B0.9700
N5—C101.371 (6)C6—C71.442 (8)
N8—C131.350 (6)C6—H6A0.9700
N8—C141.357 (6)C6—H6B0.9700
N8—C161.467 (6)C19—H19A0.9300
N4—C31.331 (7)C11—C121.429 (9)
N4—C41.371 (7)C11—H11A0.9700
N4—C61.457 (7)C11—H11B0.9700
N1—C11.154 (6)C7—H7A0.9600
N9—C181.326 (6)C7—H7B0.9600
N9—C201.359 (6)C7—H7C0.9600
N2—C21.154 (6)C17—H17A0.9600
C13—H13A0.9300C17—H17B0.9600
N6—C81.332 (6)C17—H17C0.9600
N6—C91.359 (6)C21—C221.462 (10)
N6—C111.467 (6)C21—H21A0.9700
C20—C191.354 (7)C21—H21B0.9700
C20—H20A0.9300C22—H22A0.9600
C15—C141.350 (7)C22—H22B0.9600
C15—H15A0.9300C22—H22C0.9600
C18—N101.328 (6)C12—H12A0.9600
C18—H18A0.9300C12—H12B0.9600
C8—H8A0.9300C12—H12C0.9600
N3—Cd1—N994.24 (14)C10—C9—N6106.3 (5)
N3—Cd1—N587.15 (14)C10—C9—H9A126.8
N9—Cd1—N5178.61 (13)N6—C9—H9A126.8
N3—Cd1—N7177.92 (13)C5—C4—N4106.5 (5)
N9—Cd1—N787.36 (14)C5—C4—H4A126.8
N5—Cd1—N791.26 (14)N4—C4—H4A126.8
N3—Cd1—N292.07 (17)N3—C3—N4112.9 (5)
N9—Cd1—N291.78 (16)N3—C3—H3A123.5
N5—Cd1—N288.03 (16)N4—C3—H3A123.5
N7—Cd1—N289.21 (17)C18—N10—C19106.4 (4)
N3—Cd1—N189.13 (16)C18—N10—C21125.2 (5)
N9—Cd1—N188.71 (15)C19—N10—C21128.3 (5)
N5—Cd1—N191.45 (15)C17—C16—N8112.9 (5)
N7—Cd1—N189.58 (16)C17—C16—H16A109.0
N2—Cd1—N1178.67 (16)N8—C16—H16A109.0
C13—N7—C15104.6 (4)C17—C16—H16B109.0
C13—N7—Cd1124.5 (3)N8—C16—H16B109.0
C15—N7—Cd1130.9 (3)H16A—C16—H16B107.8
C3—N3—C5104.7 (4)C7—C6—N4113.2 (6)
C3—N3—Cd1124.5 (3)C7—C6—H6A108.9
C5—N3—Cd1130.6 (4)N4—C6—H6A108.9
C8—N5—C10104.9 (4)C7—C6—H6B108.9
C8—N5—Cd1124.6 (3)N4—C6—H6B108.9
C10—N5—Cd1130.5 (3)H6A—C6—H6B107.7
C13—N8—C14106.6 (4)C20—C19—N10107.0 (5)
C13—N8—C16125.4 (4)C20—C19—H19A126.5
C14—N8—C16128.0 (4)N10—C19—H19A126.5
C3—N4—C4106.5 (4)C12—C11—N6112.7 (6)
C3—N4—C6126.2 (5)C12—C11—H11A109.0
C4—N4—C6127.3 (5)N6—C11—H11A109.0
C1—N1—Cd1148.8 (4)C12—C11—H11B109.0
N1—C1—S1178.7 (5)N6—C11—H11B109.0
C18—N9—C20104.9 (4)H11A—C11—H11B107.8
C18—N9—Cd1125.6 (3)C6—C7—H7A109.5
C20—N9—Cd1127.8 (3)C6—C7—H7B109.5
C2—N2—Cd1152.1 (4)H7A—C7—H7B109.5
N2—C2—S2178.3 (5)C6—C7—H7C109.5
N7—C13—N8112.0 (4)H7A—C7—H7C109.5
N7—C13—H13A124.0H7B—C7—H7C109.5
N8—C13—H13A124.0C16—C17—H17A109.5
C8—N6—C9106.5 (4)C16—C17—H17B109.5
C8—N6—C11126.1 (5)H17A—C17—H17B109.5
C9—N6—C11127.4 (5)C16—C17—H17C109.5
C19—C20—N9109.4 (5)H17A—C17—H17C109.5
C19—C20—H20A125.3H17B—C17—H17C109.5
N9—C20—H20A125.3C22—C21—N10111.3 (7)
C14—C15—N7109.9 (5)C22—C21—H21A109.4
C14—C15—H15A125.0N10—C21—H21A109.4
N7—C15—H15A125.0C22—C21—H21B109.4
N9—C18—N10112.2 (5)N10—C21—H21B109.4
N9—C18—H18A123.9H21A—C21—H21B108.0
N10—C18—H18A123.9C21—C22—H22A109.5
N5—C8—N6112.6 (4)C21—C22—H22B109.5
N5—C8—H8A123.7H22A—C22—H22B109.5
N6—C8—H8A123.7C21—C22—H22C109.5
C9—C10—N5109.6 (5)H22A—C22—H22C109.5
C9—C10—H10A125.2H22B—C22—H22C109.5
N5—C10—H10A125.2C11—C12—H12A109.5
C4—C5—N3109.4 (5)C11—C12—H12B109.5
C4—C5—H5A125.3H12A—C12—H12B109.5
N3—C5—H5A125.3C11—C12—H12C109.5
C15—C14—N8106.9 (5)H12A—C12—H12C109.5
C15—C14—H14A126.6H12B—C12—H12C109.5
N8—C14—H14A126.6
N3—Cd1—N7—C13103 (4)N5—Cd1—N2—C2163.7 (10)
N9—Cd1—N7—C1336.8 (4)N7—Cd1—N2—C2105.1 (10)
N5—Cd1—N7—C13143.4 (4)N1—Cd1—N2—C2129 (6)
N2—Cd1—N7—C13128.6 (4)Cd1—N2—C2—S223 (18)
N1—Cd1—N7—C1351.9 (4)C15—N7—C13—N80.7 (6)
N3—Cd1—N7—C1581 (4)Cd1—N7—C13—N8175.8 (3)
N9—Cd1—N7—C15138.7 (4)C14—N8—C13—N72.3 (6)
N5—Cd1—N7—C1541.1 (4)C16—N8—C13—N7179.1 (4)
N2—Cd1—N7—C1546.9 (4)C18—N9—C20—C190.0 (6)
N1—Cd1—N7—C15132.6 (4)Cd1—N9—C20—C19165.4 (4)
N9—Cd1—N3—C3142.9 (4)C13—N7—C15—C141.2 (6)
N5—Cd1—N3—C336.9 (4)Cd1—N7—C15—C14177.4 (3)
N7—Cd1—N3—C377 (4)C20—N9—C18—N100.4 (6)
N2—Cd1—N3—C351.0 (4)Cd1—N9—C18—N10166.2 (3)
N1—Cd1—N3—C3128.4 (4)C10—N5—C8—N60.4 (6)
N9—Cd1—N3—C542.8 (4)Cd1—N5—C8—N6179.1 (3)
N5—Cd1—N3—C5137.4 (4)C9—N6—C8—N50.1 (7)
N7—Cd1—N3—C597 (4)C11—N6—C8—N5178.3 (5)
N2—Cd1—N3—C5134.7 (4)C8—N5—C10—C90.7 (6)
N1—Cd1—N3—C545.9 (4)Cd1—N5—C10—C9178.8 (4)
N3—Cd1—N5—C8105.4 (4)C3—N3—C5—C40.5 (6)
N9—Cd1—N5—C869 (5)Cd1—N3—C5—C4174.7 (4)
N7—Cd1—N5—C876.0 (4)N7—C15—C14—N82.6 (6)
N2—Cd1—N5—C813.2 (4)C13—N8—C14—C153.0 (6)
N1—Cd1—N5—C8165.6 (4)C16—N8—C14—C15178.6 (5)
N3—Cd1—N5—C1075.3 (5)N5—C10—C9—N60.7 (7)
N9—Cd1—N5—C10111 (5)C8—N6—C9—C100.5 (6)
N7—Cd1—N5—C10103.4 (5)C11—N6—C9—C10178.7 (5)
N2—Cd1—N5—C10167.4 (5)N3—C5—C4—N41.0 (6)
N1—Cd1—N5—C1013.8 (5)C3—N4—C4—C51.0 (6)
N3—Cd1—N1—C195.1 (8)C6—N4—C4—C5179.7 (5)
N9—Cd1—N1—C1170.6 (9)C5—N3—C3—N40.2 (6)
N5—Cd1—N1—C18.0 (9)Cd1—N3—C3—N4175.7 (3)
N7—Cd1—N1—C183.3 (8)C4—N4—C3—N30.8 (6)
N2—Cd1—N1—C159 (6)C6—N4—C3—N3179.4 (5)
Cd1—N1—C1—S1122 (22)N9—C18—N10—C190.6 (6)
N3—Cd1—N9—C1882.4 (4)N9—C18—N10—C21178.0 (5)
N5—Cd1—N9—C18103 (5)C13—N8—C16—C1780.3 (7)
N7—Cd1—N9—C1896.3 (4)C14—N8—C16—C17101.5 (7)
N2—Cd1—N9—C18174.6 (4)C3—N4—C6—C770.8 (9)
N1—Cd1—N9—C186.7 (4)C4—N4—C6—C7107.5 (7)
N3—Cd1—N9—C20115.1 (4)N9—C20—C19—N100.3 (7)
N5—Cd1—N9—C2059 (5)C18—N10—C19—C200.5 (6)
N7—Cd1—N9—C2066.2 (4)C21—N10—C19—C20177.9 (6)
N2—Cd1—N9—C2022.9 (4)C8—N6—C11—C1279.8 (9)
N1—Cd1—N9—C20155.9 (4)C9—N6—C11—C1298.2 (8)
N3—Cd1—N2—C276.6 (10)C18—N10—C21—C22104.3 (7)
N9—Cd1—N2—C217.7 (10)C19—N10—C21—C2272.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N10.932.813.324 (8)116
C8—H8A···N20.932.723.279 (8)119
C3—H3A···N50.932.973.346 (7)106
C5—H5A···N1i0.932.983.873 (8)162
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C5H8N2)4]
Mr613.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0580 (18), 13.532 (3), 13.571 (3)
α, β, γ (°)69.45 (3), 70.88 (3), 89.02 (3)
V3)1462.6 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.770, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
6087, 5708, 4412
Rint0.024
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.00
No. of reflections5708
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.85

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···N10.932.8143.324 (8)116
C8—H8A···N20.932.7223.279 (8)119
C3—H3A···N50.932.9733.346 (7)106
C5—H5A···N1i0.932.9783.873 (8)162
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the NSF of China (No. 20871072) and the Doctoral Science Foundation of Shandong Province (No. 2007BS04023).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, G. Y., Chen, H. N., Liu, F. Q., Li, S. X., Li, R. X. & Huang, S. Y. (2007). Chin. J. Inorg. Chem. 23, 1085–1088.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds