organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o601-o602

7-(4-Chloro­phen­yl)-9-phenyl-7H-pyrrolo[3,2-e]tetra­zolo[1,5-c]pyrimidine

aDepartment of Chemistry, M.G. Science Institute, Navrangpura, Navrangpura, Ahmedabad, Gujarat, 380 009, India, bDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat, 380 001, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 2 February 2010; accepted 7 February 2010; online 13 February 2010)

In the title compound, C18H11ClN6, the pyrrole, pyrimidine and tetra­zole rings form a nearly planar fused trihetrocyclic system with an r.m.s. deviation of 0.0387 (13) Å, to which the 4-chloro­phenyl group and the phenyl group are substituted at the 7 and 9 positions, respectively. The dihedral angles between the pyrrole ring and the 4-chloro­phenyl and phenyl rings are 32.1 (4) and 7.87 (7)°, respectively. In the crystal, weak inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds link the mol­ecules into a layer parallel to the (001) plane. The layers are further connected by ππ stacking inter­actions [centroid–centroid distances: 3.8413 (8) and 3.5352 (8) Å]. Intra­molecular C—H⋯N hydrogen bonds are also present.

Related literature

For nucleophilic substitution reactions, see: Augustine & Agrawal (2005[Augustine, C. & Agrawal, Y. K. (2005). Indian J. Chem. 44B, 1653-1658.]); Dave & Shah (1998[Dave, C. G. & Shah, R. D. (1998). J. Heterocycl. Chem. 35, 1295-1300.]); Desai & Shah (2006[Desai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275-3278.]). For phase-transfer catalysis techniques, see: Hartwig (1997[Hartwig, J. F. (1997). Synlett. 116, 329-340.], 1998[Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046-2067.]); Frost & Mendoncua (1998[Frost, C. G. & Mendoncua, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2615-2624.]). For eductive ring cleavage reactions, see: Martarello (2001[Martarello, L. (2001). Nucl. Med. Biol. 28, 187-195.]); Gangjeea et al. (2005[Gangjeea, A., Jaina, H. D. & Kisliukb, R. L. (2005). Bioorg. Med. Chem. Lett. 15, 2225-2230.]). For the biological activity of fused tetra­zolopyrimidines, see: Shishoo & Jain (1992[Shishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883-893.]); Desai & Shah (2006[Desai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275-3278.]). For a related structure, see: Jotani et al. (2010[Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010). Acta Cryst. E66, o212-o213.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For MOPAC PM3 calculations, see: Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11ClN6

  • Mr = 346.78

  • Monoclinic, P 21 /c

  • a = 11.8335 (3) Å

  • b = 17.4200 (5) Å

  • c = 7.4094 (2) Å

  • β = 91.129 (1)°

  • V = 1527.07 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.961

  • 22397 measured reflections

  • 5544 independent reflections

  • 3946 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.00

  • 5544 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N4i 0.93 2.54 3.393 (2) 153
C5—H5⋯Cl1ii 0.93 2.82 3.6045 (15) 143
C12—H12⋯N6 0.93 2.32 3.191 (2) 155
C18—H18⋯N2 0.93 2.48 2.979 (2) 114
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Nucleophilic substitutions are key reactions having enormous applications in the field of organic synthetic chemistry (Augustine & Agrawal, 2005; Desai & Shah, 2006). Synthesis of tetrazolopyrrolopyrimidines involves studies of various nucleophilic displacements (Dave & Shah, 1998; Desai & Shah, 2006) such as chlorination, azidolysis and amination in fused pyrimidines. Phase Transfer Catalysis (PTC), an environmental benign technique (Hartwig, 1997, 1998), offers many advantages over conventional methodologies viz use of non-polar solvents, reduced reaction temperature and reaction time, suppression of side products, high yield, replacement of hard bases and easy work up. Strategies involving eco friendly phase transfer catalysis with nucleophilic displacements have always been of great interest. Generally, amination of 4-chloroazines uses harsh reaction conditions (Hartwig, 1998; Frost & Mendoncua, 1998) while fused tetrazole are found to posess latent amino functionality giving facile amination (Shishoo & Jain, 1992; Desai & Shah, 2006). Reductive ring cleavage of tetrazolo[1,5-c]pyrrolo[3,2-e]pyramidines results in the formation of 4-aminopyrrolo[2,3-d]pyrimidines, the landmarks of pharmaceutics (Desai & Shah, 2006; Martarello, 2001; Gangjeea et al., 2005). In addition a variety of biological activities have been attributed to fused tetrazolopyrimidines (Shishoo & Jain, 1992; Desai & Shah, 2006). In view of the importance of these compounds, we report the crystal structure of title compound (I).

The title compound, C18H11ClN6, (I), is composed of a triheterocycle ring system resulting from the fusion of a benzene and 4-chlorobenzene substituted pyrrole and a tetrazole ring to a pyrimidine ring in a nearly planar fashion (Fig. 1). The r. m. s. deviation of atoms of the fused triheterocycle ring system from the mean plane through it is 0.0387 Å. The bond lengths and angles of fused tetrazole and pyrrole ring in (I) are normal and similar to those observed in a similar structure (Jotani et al., 2010). The planarity of each of the five rings (tetrazole, pyrrole, pyrimidine, 4-chlorophenyl and benzene) is confirmed by the r.m.s. deviation values (0.0017, 0.0043, 0.0107,0.0059 and 0.0017 Å), respectively. The dihedral angle between the least squares planes of the tetrazole and pyrimidine rings fused with the pyrrole ring are 2.61 (7) and 5.42 (8)°. The dihedral angles between the mean planes of the ortho-substituted 4-chlorophenyl and benzene rings with the pyrrole ring are 32.1 (4) and 7.87 (7)°, respectively.

The crystal structure is supported by weak C—H···N intramolecular (Fig. 2 & 3) and weak C—H···Cl and C—H···N intermolecular (Fig. 3) interactions which link the molecules into a layer parallel to the (001) plane (Table 1). The weak C—H···N intramolecular interactions forms pseudo R22(8)S(6) and R22(8)S(7) graph-set motifs (Fig. 1, Table 1) (Bernstein et al., 1995) between the benzene and triheterocycle rings and between the 4-chlorobenze and triheterocycle rings, respectively. In addition, crystal packing is also supported by two weak ππ stacking interactions (Fig. 4). One is between the centroids of two pyrrole rings [Cg1—Cg1(1-x, -y, 2-z) 3.841 (2) Å; slippage 1.420 Å; Cg1 = N1/C1–C4]. The second is between the centroids of a pyrimidine (Cg3) and phenyl (Cg4) ring [Cg3—Cg4(1-x, -y, 1-z) 3.535 (2) Å; Cg3 = N2/C1/C2/C6/N3/C5; Cg4 = C7–C12].

After a geometry optimized MOPAC PM3 computational calculation (Schmidt & Polik, 2007) on (I), in vacuo, the angle between the mean planes of the pyrimidine and tetrazole groups become completely planar with the pyrrole ring in the local minimized structure. The dihedral angle between the mean planes of the ortho-substituted 4-chlorophenyl and benzene rings and the now completely planar triheterocycle group becomes 42.17 and 41.70°, respectively. The separation of the H4···H12 (2.305 Å) and H4···H18 (2.103 Å) atoms between the pyrrole ring and the 4-chlorophenyl and benzene rings before the calculations changed to 2.492 and 2.588 Å, respectively, after the calculation showing how the crystal packing effects significantly determine the twist of both the 4-chlorophenyl and benzene rings. In addition, the C3–C7 and N1–C13 bond lengths changed from 1.4696 (16) and 1.4221 (15) Å to 1.455 and 1.442 Å, respectively. It is clear that the collective action of these intramolecular, intermolecular and π-π stacking interactions interactions significantly influence the twist angles for the molecule in this crystal.

Related literature top

For nucleophilic substitution reactions, see: Augustine & Agrawal (2005); Dave & Shah (1998); Desai & Shah (2006). For phase-transfer catalysis techniques, see: Hartwig (1997, 1998); Frost & Mendoncua (1998). For eductive ring cleavage reactions, see: Martarello (2001); Gangjeea et al. (2005). For the biological activity of fused tetrazolopyrimidines, see: Shishoo & Jain (1992); Desai & Shah (2006). For a related structure, see: Jotani et al. (2010). For graph-set motifs, see: Bernstein et al. (1995). For MOPAC PM3 calculations, see: Schmidt & Polik (2007).

Experimental top

The title compound is synthesized by three different routes and Phase Transfer Catalysis is novel among them. To a well stirred mixture of 5-phenyl-7-(4-chlorophenyl)-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.5 mmol) in toluene (25 ml) was added sodium azide (6 mmol) in water (5 ml). The reaction mixture was stirred under reflux condition for 1–1.5 h. Thereafter, the two phases were separated. The aqueous phase was extracted with toluene and combined organic layers were washed with water. The excess of solvent was distilled under reduced pressure. The obtained solid was filtered, dried, and crystallized from 1,4-dioxane.

Refinement top

H atoms were placed in idealized positions (C—H = 0.93—0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labelling scheme and 50% probability displacement ellipsoids. The dashed line represents a weak intramolecular C—H···N hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of (I), viewed down the a axis showing weak intramolecular C—H···N hydrogen bond interactions.
[Figure 3] Fig. 3. Crystal packing of (I), showing weak C—H···N and C—H···Cl intermolecular interactions. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. The molecular packing of (I), showing ππ stacking interactions along the c axis and forming a chain of molecules along [0 0 1].
7-(4-Chlorophenyl)-9-phenyl-7H-pyrrolo[3,2-e]tetrazolo[1,5-c]pyrimidine top
Crystal data top
C18H11ClN6F(000) = 712
Mr = 346.78Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 500 reflections
a = 11.8335 (3) Åθ = 1.8–30.0°
b = 17.4200 (5) ŵ = 0.26 mm1
c = 7.4094 (2) ÅT = 293 K
β = 91.129 (1)°Plate, colorless
V = 1527.07 (7) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5544 independent reflections
Radiation source: fine-focus sealed tube3946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1717
Tmin = 0.941, Tmax = 0.961k = 2626
22397 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.066P)2 + 0.3891P]
where P = (Fo2 + 2Fc2)/3
5544 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H11ClN6V = 1527.07 (7) Å3
Mr = 346.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8335 (3) ŵ = 0.26 mm1
b = 17.4200 (5) ÅT = 293 K
c = 7.4094 (2) Å0.40 × 0.20 × 0.15 mm
β = 91.129 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5544 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
3946 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.961Rint = 0.024
22397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
5544 reflectionsΔρmin = 0.24 e Å3
226 parameters
Special details top

Experimental. Additionoal synthetic routes: A) A mixture of sodium azide (0.011 mole), ammonium chloride (0.011 mole) and 5-phenyl-7-(4-chlorophenyl)-4-chloro-7H-pyrrolo[2,3-d] pyrimidine (0.01 mole) in DMSO (20 ml) was stirred for for 2 h at 363 K to give the title compound which was crystallized from dioxane.

(B) To a mixture of 5-phencyl-7-(4-chlorophenyl)-4-hydrazino-7H-pyrrolo[2,3-d]πyrimidine (0.01 mole) in acetic acid (40 ml) was added aqueous solution of sodium nitrite (20% w/v, 4.2 ml) in portions with stirring at 273–278 K and the reaction mixture was further stirred for 2 hr at the same temperature. Then it was diluted with cold water and the solid obtained was filtered, washed with water, sodium bicarbonate (20% w/v), followed by water, dried and crystallized from dioxane.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01669 (4)0.26673 (3)0.99565 (6)0.06192 (15)
N10.65304 (9)0.04516 (6)0.82381 (15)0.0346 (2)
N20.75894 (10)0.07074 (7)0.78100 (17)0.0426 (3)
N30.65113 (11)0.17103 (7)0.66593 (18)0.0434 (3)
N40.63580 (14)0.24253 (7)0.5952 (2)0.0590 (4)
N50.52978 (14)0.24604 (8)0.5529 (2)0.0628 (4)
N60.47357 (12)0.18044 (7)0.5911 (2)0.0504 (3)
C10.66062 (10)0.03079 (7)0.77751 (16)0.0333 (2)
C20.55269 (10)0.05656 (7)0.72492 (16)0.0318 (2)
C30.47622 (10)0.00643 (7)0.74307 (16)0.0312 (2)
C40.54180 (10)0.06642 (7)0.80355 (17)0.0345 (3)
H40.51440.11530.82780.041*
C50.75188 (13)0.14057 (9)0.7264 (2)0.0474 (3)
H50.81640.17110.72790.057*
C60.55028 (11)0.13325 (7)0.66188 (18)0.0368 (3)
C70.35371 (10)0.01186 (7)0.70905 (17)0.0325 (2)
C80.29678 (12)0.07857 (8)0.7572 (2)0.0416 (3)
H80.33680.11840.81220.050*
C90.18247 (12)0.08666 (9)0.7248 (2)0.0483 (3)
H90.14630.13170.75800.058*
C100.12136 (13)0.02846 (10)0.6436 (2)0.0517 (4)
H100.04400.03380.62240.062*
C110.17620 (13)0.03772 (10)0.5943 (2)0.0502 (4)
H110.13550.07710.53850.060*
C120.29125 (11)0.04658 (8)0.6267 (2)0.0411 (3)
H120.32690.09180.59310.049*
C130.74236 (10)0.09744 (7)0.86362 (17)0.0346 (3)
C140.73102 (12)0.17313 (8)0.8092 (2)0.0418 (3)
H140.66690.18870.74450.050*
C150.81516 (13)0.22565 (9)0.8513 (2)0.0462 (3)
H150.80730.27690.81780.055*
C160.91070 (12)0.20107 (9)0.94355 (19)0.0434 (3)
C170.92339 (12)0.12600 (10)0.9961 (2)0.0479 (3)
H170.98870.11031.05750.057*
C180.83840 (12)0.07379 (9)0.9570 (2)0.0435 (3)
H180.84580.02290.99350.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0518 (2)0.0722 (3)0.0619 (3)0.0327 (2)0.00217 (17)0.0090 (2)
N10.0319 (5)0.0306 (5)0.0413 (5)0.0017 (4)0.0019 (4)0.0025 (4)
N20.0358 (5)0.0407 (6)0.0514 (7)0.0053 (5)0.0009 (5)0.0025 (5)
N30.0491 (6)0.0278 (5)0.0534 (7)0.0045 (5)0.0052 (5)0.0004 (5)
N40.0687 (9)0.0289 (6)0.0794 (10)0.0041 (6)0.0055 (8)0.0073 (6)
N50.0726 (10)0.0293 (6)0.0864 (11)0.0019 (6)0.0023 (8)0.0084 (7)
N60.0558 (7)0.0262 (5)0.0689 (8)0.0050 (5)0.0055 (6)0.0034 (5)
C10.0339 (5)0.0305 (6)0.0355 (6)0.0006 (4)0.0010 (4)0.0008 (5)
C20.0358 (6)0.0258 (5)0.0338 (6)0.0018 (4)0.0004 (4)0.0025 (4)
C30.0322 (5)0.0266 (5)0.0347 (6)0.0011 (4)0.0012 (4)0.0024 (4)
C40.0332 (5)0.0275 (6)0.0426 (6)0.0003 (4)0.0014 (5)0.0013 (5)
C50.0418 (7)0.0414 (8)0.0591 (9)0.0095 (6)0.0032 (6)0.0011 (6)
C60.0432 (6)0.0273 (6)0.0400 (6)0.0007 (5)0.0010 (5)0.0036 (5)
C70.0326 (5)0.0297 (6)0.0350 (6)0.0024 (4)0.0030 (4)0.0040 (4)
C80.0384 (6)0.0318 (6)0.0543 (8)0.0001 (5)0.0047 (5)0.0005 (6)
C90.0425 (7)0.0422 (8)0.0600 (9)0.0098 (6)0.0062 (6)0.0043 (7)
C100.0367 (7)0.0613 (10)0.0567 (9)0.0046 (6)0.0117 (6)0.0038 (7)
C110.0405 (7)0.0531 (9)0.0563 (9)0.0068 (6)0.0136 (6)0.0038 (7)
C120.0383 (6)0.0375 (7)0.0472 (7)0.0029 (5)0.0057 (5)0.0042 (6)
C130.0319 (5)0.0348 (6)0.0372 (6)0.0051 (5)0.0002 (4)0.0026 (5)
C140.0372 (6)0.0352 (7)0.0527 (8)0.0035 (5)0.0047 (5)0.0006 (6)
C150.0467 (7)0.0375 (7)0.0544 (8)0.0104 (6)0.0013 (6)0.0023 (6)
C160.0376 (6)0.0517 (8)0.0412 (7)0.0162 (6)0.0049 (5)0.0063 (6)
C170.0359 (6)0.0569 (9)0.0506 (8)0.0086 (6)0.0060 (6)0.0013 (7)
C180.0387 (6)0.0420 (7)0.0496 (8)0.0045 (5)0.0071 (6)0.0050 (6)
Geometric parameters (Å, º) top
Cl1—C161.7353 (13)C7—C121.3920 (17)
N1—C11.3701 (17)C8—C91.3763 (19)
N1—C41.3728 (15)C8—H80.9300
N1—C131.4216 (15)C9—C101.377 (2)
N2—C51.284 (2)C9—H90.9300
N2—C11.3556 (16)C10—C111.376 (2)
N3—C61.3625 (18)C10—H100.9300
N3—N41.3620 (17)C11—C121.3864 (19)
N3—C51.372 (2)C11—H110.9300
N4—N51.289 (2)C12—H120.9300
N5—N61.3550 (19)C13—C141.3846 (19)
N6—C61.3252 (18)C13—C181.3818 (18)
C1—C21.4018 (16)C14—C151.3832 (19)
C2—C61.4153 (17)C14—H140.9300
C2—C31.4304 (17)C15—C161.378 (2)
C3—C41.3717 (16)C15—H150.9300
C3—C71.4696 (16)C16—C171.372 (2)
C4—H40.9300C17—C181.3823 (19)
C5—H50.9300C17—H170.9300
C7—C81.3932 (19)C18—H180.9300
C1—N1—C4107.48 (10)C9—C8—H8119.4
C1—N1—C13128.20 (10)C7—C8—H8119.4
C4—N1—C13123.87 (11)C8—C9—C10120.44 (14)
C5—N2—C1115.46 (12)C8—C9—H9119.8
C6—N3—N4108.86 (13)C10—C9—H9119.8
C6—N3—C5125.13 (12)C11—C10—C9119.12 (13)
N4—N3—C5125.98 (13)C11—C10—H10120.4
N5—N4—N3104.99 (13)C9—C10—H10120.4
N4—N5—N6112.87 (13)C10—C11—C12120.94 (14)
C6—N6—N5105.70 (13)C10—C11—H11119.5
N2—C1—N1123.46 (11)C12—C11—H11119.5
N2—C1—C2128.15 (12)C11—C12—C7120.36 (14)
N1—C1—C2108.37 (11)C11—C12—H12119.8
C1—C2—C6113.98 (11)C7—C12—H12119.8
C1—C2—C3107.62 (10)C14—C13—C18120.25 (12)
C6—C2—C3138.28 (12)C14—C13—N1118.84 (11)
C4—C3—C2105.08 (10)C18—C13—N1120.91 (12)
C4—C3—C7123.84 (11)C15—C14—C13119.94 (13)
C2—C3—C7131.08 (11)C15—C14—H14120.0
C3—C4—N1111.43 (11)C13—C14—H14120.0
C3—C4—H4124.3C16—C15—C14119.09 (14)
N1—C4—H4124.3C16—C15—H15120.5
N2—C5—N3121.32 (13)C14—C15—H15120.5
N2—C5—H5119.3C17—C16—C15121.41 (13)
N3—C5—H5119.3C17—C16—Cl1119.38 (12)
N6—C6—N3107.58 (12)C15—C16—Cl1119.21 (12)
N6—C6—C2136.49 (13)C16—C17—C18119.53 (13)
N3—C6—C2115.89 (12)C16—C17—H17120.2
C8—C7—C12117.85 (12)C18—C17—H17120.2
C8—C7—C3119.35 (11)C13—C18—C17119.76 (14)
C12—C7—C3122.79 (12)C13—C18—H18120.1
C9—C8—C7121.29 (13)C17—C18—H18120.1
C6—N3—N4—N50.35 (19)C1—C2—C6—N6175.67 (16)
C5—N3—N4—N5178.45 (16)C3—C2—C6—N60.1 (3)
N3—N4—N5—N60.2 (2)C1—C2—C6—N31.68 (17)
N4—N5—N6—C60.0 (2)C3—C2—C6—N3177.24 (14)
C5—N2—C1—N1177.25 (13)C4—C3—C7—C86.91 (19)
C5—N2—C1—C21.2 (2)C2—C3—C7—C8172.84 (13)
C4—N1—C1—N2179.69 (12)C4—C3—C7—C12171.75 (13)
C13—N1—C1—N27.3 (2)C2—C3—C7—C128.5 (2)
C4—N1—C1—C20.98 (14)C12—C7—C8—C90.1 (2)
C13—N1—C1—C2171.46 (12)C3—C7—C8—C9178.82 (13)
N2—C1—C2—C62.66 (19)C7—C8—C9—C100.1 (2)
N1—C1—C2—C6175.97 (11)C8—C9—C10—C110.4 (3)
N2—C1—C2—C3179.57 (13)C9—C10—C11—C120.5 (3)
N1—C1—C2—C30.93 (14)C10—C11—C12—C70.4 (2)
C1—C2—C3—C40.51 (14)C8—C7—C12—C110.1 (2)
C6—C2—C3—C4175.23 (15)C3—C7—C12—C11178.60 (13)
C1—C2—C3—C7179.27 (12)C1—N1—C13—C14143.71 (14)
C6—C2—C3—C75.0 (3)C4—N1—C13—C1427.59 (19)
C2—C3—C4—N10.09 (14)C1—N1—C13—C1837.1 (2)
C7—C3—C4—N1179.89 (11)C4—N1—C13—C18151.55 (14)
C1—N1—C4—C30.67 (15)C18—C13—C14—C151.2 (2)
C13—N1—C4—C3172.18 (11)N1—C13—C14—C15177.96 (13)
C1—N2—C5—N31.2 (2)C13—C14—C15—C161.6 (2)
C6—N3—C5—N22.0 (2)C14—C15—C16—C170.7 (2)
N4—N3—C5—N2175.77 (15)C14—C15—C16—Cl1179.71 (12)
N5—N6—C6—N30.22 (17)C15—C16—C17—C180.5 (2)
N5—N6—C6—C2177.28 (16)Cl1—C16—C17—C18179.08 (12)
N4—N3—C6—N60.36 (17)C14—C13—C18—C170.0 (2)
C5—N3—C6—N6178.48 (14)N1—C13—C18—C17179.16 (13)
N4—N3—C6—C2177.73 (12)C16—C17—C18—C130.8 (2)
C5—N3—C6—C20.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N4i0.932.543.393 (2)153
C5—H5···Cl1ii0.932.823.6045 (15)143
C12—H12···N60.932.323.191 (2)155
C18—H18···N20.932.482.979 (2)114
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H11ClN6
Mr346.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8335 (3), 17.4200 (5), 7.4094 (2)
β (°) 91.129 (1)
V3)1527.07 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.941, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
22397, 5544, 3946
Rint0.024
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.00
No. of reflections5544
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N4i0.932.543.393 (2)153.2
C5—H5···Cl1ii0.932.823.6045 (15)142.8
C12—H12···N60.932.323.191 (2)155.2
C18—H18···N20.932.482.979 (2)114.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST) and SAIF, IIT Madras, Chennai, India, for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAugustine, C. & Agrawal, Y. K. (2005). Indian J. Chem. 44B, 1653–1658.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDave, C. G. & Shah, R. D. (1998). J. Heterocycl. Chem. 35, 1295–1300.  CrossRef CAS Google Scholar
First citationDesai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275–3278.  Web of Science CrossRef Google Scholar
First citationFrost, C. G. & Mendoncua, P. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2615–2624.  Google Scholar
First citationGangjeea, A., Jaina, H. D. & Kisliukb, R. L. (2005). Bioorg. Med. Chem. Lett. 15, 2225–2230.  Web of Science PubMed Google Scholar
First citationHartwig, J. F. (1997). Synlett. 116, 329–340.  CrossRef Web of Science Google Scholar
First citationHartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046–2067.  CrossRef CAS Google Scholar
First citationJotani, M. M., Shah, R. D. & Jasinski, J. P. (2010). Acta Cryst. E66, o212–o213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartarello, L. (2001). Nucl. Med. Biol. 28, 187–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, K. S. (1992). J. Heterocycl. Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o601-o602
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds