metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m346-m347

μ-Succinato-bis­­[aqua­(2,2′:6′,2′′-terpyridine)copper(II)] dinitrate dihydrate

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@163.com

(Received 4 February 2010; accepted 23 February 2010; online 27 February 2010)

The title compound, [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2O, was synthesized under hydro­thermal conditions. The dinuclear copper complex is located on a crystallographic inversion centre. The CuII ion is penta­coordinated in a tetra­gonal–pyramidal geometry, with one O atom of a succinate dianion and three N atoms of a 2,2′:6′,2′′-terpyridine ligand occupying the basal plane, and a water O atom located at the apical site. In the crystal structure, O—H⋯O hydrogen bonding links the mol­ecules into a chain parallel to the a axis.

Related literature

For background to the use of saturated aliphatic carboxyl­ate ligands in the preparation of metal-organic complexes, see: Brusau et al. (2000[Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem. 153, 1-8.]); Rastsvetaeva et al. (1996[Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr. 211, 808-810.]). For related structures, see: Li et al. (2009[Li, Z.-F., Wang, C.-X. & Wang, P. (2009). Acta Cryst. E65, m1095.]); Ke et al. (2009[Ke, X.-J., Li, D.-S., Zhao, J., He, Q.-F. & Li, C. (2009). Acta Cryst. E65, m527.]); Jin et al. (2008[Jin, S., Wang, D., Yu, Y., Luo, G. & Ye, Y. (2008). Acta Cryst. E64, m448-m449.]); He & Huang (2008[He, Q. & Huang, B.-J. (2008). Acta Cryst. E64, m237.]); He et al. (2007[He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.]); Duangthongyou & Siripaisarnpipat (2008[Duangthongyou, T. & Siripaisarnpipat, S. (2008). Acta Cryst. E64, m560.]); Liu (2009[Liu, X.-W. (2009). Acta Cryst. E65, m574.]); Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 745-750.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2O

  • Mr = 905.77

  • Triclinic, [P \overline 1]

  • a = 7.397 (4) Å

  • b = 10.650 (5) Å

  • c = 12.574 (6) Å

  • α = 70.196 (9)°

  • β = 83.512 (9)°

  • γ = 83.836 (10)°

  • V = 923.5 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 296 K

  • 0.34 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 0.724

  • 4998 measured reflections

  • 3211 independent reflections

  • 2951 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 0.98

  • 3211 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.917 (2)
Cu1—N3 1.937 (3)
Cu1—N4 2.038 (3)
Cu1—N2 2.049 (3)
Cu1—O1W 2.260 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WB⋯O1i 0.85 2.33 3.101 (4) 150
O2W—H2WA⋯O3ii 0.85 2.32 3.138 (7) 162
O1W—H1WB⋯O2W 0.85 1.98 2.831 (4) 174
O1W—H1WA⋯O2iii 0.85 1.92 2.755 (3) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes (Duangthongyou & Siripaisarnpipat, 2008; He & Huang, 2008; Jin et al., 2008; Li et al., 2009; Liu, 2009; Ke et al., 2009). The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva et al., 1996; Brusau et al., 2000; He et al., 2007). We report herein the synthesis and crystal stucture of a new succinate complex [Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2.2H2O.

In the centrosymmetric dinuclear copper complex (Fig. 1) each of the CuII ions is pentacoordinated, with one O atom of a succinate dianion and three N atoms of a 2,2':6',2''-terpyridine ligand occupying the basal plane, and a water O atom completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N2, N3, N4 and O1 are nearly coplanar, with the maximum deviation from the least-squares plane of 0.0292 (13) Å. The Cu atom is displaced by 0.1281 (11) Å from this plane towards the apical O atom.

With O—H···O hydrogen bonds between the coordinated water molecule and the carboxylate group, (Table 1), a one-dimensional chain running parallel to the a axis is formed as shown in Fig.2. The uncoordinated water provides an extra link and thereby strengthens the chain and also forms a link to the nitrate counterions.

Related literature top

For background to the use of saturated aliphatic carboxylate ligands in the preparation of metal-organic complexes, see: Brusau et al. (2000); Rastsvetaeva et al. (1996). For related structures, see: Li et al. (2009); Ke et al. (2009); Jin et al. (2008); He & Huang (2008); He et al. (2007); Duangthongyou & Siripaisarnpipat, 2008; Liu (2009); Ng (1998).

Experimental top

The title complound was synthesized hydrothermally in a teflon-lined autoclave (25 ml) by heating a mixture of succinic acid (0.2 mmol), 2,2':6',2''-terpyridine (0.4 mmol), Cu(NO3)2.4H2O (0.2 mmol) and Et3N (1 ml) in water (10 ml) at 393 K for 3 days. The autoclave was slowly cooled to room temperature. Crystals suitable for X-ray analysis were obtained directly from the reaction product.

Refinement top

The positions of the water H atoms, obtained from a difference Fourier map, were constrained to ideal water geometry and fixed in the final stages of refinement (O—H 0.85 Å), All other H atoms were included in calculated positions, with C—H bond lengths fixed at 0.97 Å (methylene —CH2—) or 0.93Å (aryl group) and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.2 Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title complound. Hydrogen-bond interactions are drawn with dashed lines.
µ-Succinato-bis[aqua(2,2':6',2''-terpyridine)copper(II)] dinitrate dihydrate top
Crystal data top
[Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2OZ = 1
Mr = 905.77F(000) = 464
Triclinic, P1Dx = 1.629 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.397 (4) ÅCell parameters from 4421 reflections
b = 10.650 (5) Åθ = 3.3–28.0°
c = 12.574 (6) ŵ = 1.23 mm1
α = 70.196 (9)°T = 296 K
β = 83.512 (9)°Block, colourless
γ = 83.836 (10)°0.34 × 0.32 × 0.28 mm
V = 923.5 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube2951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.679, Tmax = 0.724k = 1211
4998 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.1057P)2 + 0.320P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3211 reflectionsΔρmax = 0.70 e Å3
263 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (7)
Crystal data top
[Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2Oγ = 83.836 (10)°
Mr = 905.77V = 923.5 (8) Å3
Triclinic, P1Z = 1
a = 7.397 (4) ÅMo Kα radiation
b = 10.650 (5) ŵ = 1.23 mm1
c = 12.574 (6) ÅT = 296 K
α = 70.196 (9)°0.34 × 0.32 × 0.28 mm
β = 83.512 (9)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2951 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.724Rint = 0.096
4998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.98Δρmax = 0.70 e Å3
3211 reflectionsΔρmin = 0.67 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24585 (4)0.64732 (3)0.22948 (2)0.0286 (2)
O1W0.5317 (3)0.5692 (3)0.1875 (2)0.0493 (6)
H1WA0.63820.59710.17170.059*
H1WB0.52960.50650.16030.059*
N20.2116 (3)0.4762 (3)0.3654 (2)0.0341 (6)
N30.2929 (3)0.7096 (3)0.3510 (2)0.0334 (6)
N40.2612 (4)0.8463 (3)0.1423 (2)0.0356 (6)
C10.1650 (5)0.3580 (4)0.3636 (3)0.0448 (8)
H10.14500.34990.29460.054*
C20.1462 (5)0.2482 (4)0.4615 (4)0.0540 (9)
H20.11500.16740.45810.065*
C30.1743 (5)0.2605 (4)0.5637 (3)0.0573 (10)
H30.16120.18820.63040.069*
C40.2222 (5)0.3814 (4)0.5667 (3)0.0501 (9)
H40.24220.39140.63510.060*
C50.2399 (4)0.4875 (3)0.4657 (3)0.0371 (7)
C60.2890 (4)0.6223 (3)0.4581 (3)0.0360 (7)
C70.3259 (5)0.6642 (4)0.5456 (3)0.0495 (9)
H70.32560.60490.61950.059*
C80.3633 (5)0.7967 (5)0.5210 (3)0.0558 (10)
H80.38830.82600.57930.067*
C90.3642 (5)0.8862 (4)0.4107 (4)0.0516 (9)
H90.38980.97470.39420.062*
C100.3253 (4)0.8388 (3)0.3258 (3)0.0381 (7)
C110.3088 (4)0.9175 (3)0.2045 (3)0.0378 (7)
C120.3356 (5)1.0526 (3)0.1567 (3)0.0509 (9)
H120.37091.09980.20010.061*
C130.3088 (5)1.1167 (4)0.0423 (4)0.0569 (10)
H130.32671.20720.00830.068*
C140.2558 (5)1.0446 (4)0.0195 (3)0.0526 (9)
H140.23421.08630.09530.063*
C150.2352 (5)0.9106 (3)0.0317 (3)0.0427 (8)
H150.20200.86210.01130.051*
O10.1725 (3)0.5935 (2)0.11084 (18)0.0346 (5)
O20.1129 (3)0.6332 (2)0.17197 (19)0.0418 (5)
C160.0007 (4)0.5965 (3)0.1065 (2)0.0288 (6)
C170.0602 (4)0.5554 (3)0.0128 (3)0.0388 (7)
H17A0.18340.52720.03370.047*
H17B0.06320.63290.05560.047*
N10.1320 (5)0.8852 (4)0.7310 (3)0.0583 (9)
O30.2712 (7)0.9214 (6)0.7484 (4)0.1279 (18)
O40.0270 (5)0.9562 (4)0.6617 (3)0.0940 (12)
O50.1130 (8)0.7657 (4)0.7705 (4)0.1219 (17)
O2W0.5518 (4)0.3538 (3)0.1018 (3)0.0623 (7)
H2WA0.61840.28250.13020.075*
H2WB0.60290.39630.03740.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0298 (3)0.0333 (3)0.0296 (3)0.00097 (16)0.00715 (15)0.01870 (17)
O1W0.0279 (11)0.0587 (15)0.0753 (16)0.0008 (10)0.0012 (11)0.0434 (13)
N20.0310 (13)0.0389 (13)0.0353 (13)0.0019 (11)0.0049 (10)0.0166 (11)
N30.0310 (13)0.0439 (14)0.0343 (12)0.0067 (11)0.0098 (10)0.0255 (11)
N40.0366 (14)0.0353 (13)0.0397 (13)0.0043 (11)0.0072 (11)0.0193 (11)
C10.0395 (17)0.0459 (18)0.0524 (19)0.0009 (15)0.0061 (14)0.0205 (15)
C20.0411 (19)0.0442 (19)0.071 (2)0.0029 (16)0.0040 (17)0.0116 (17)
C30.0428 (19)0.059 (2)0.053 (2)0.0043 (17)0.0019 (16)0.0007 (17)
C40.0449 (19)0.065 (2)0.0345 (16)0.0085 (17)0.0017 (14)0.0136 (16)
C50.0278 (15)0.0488 (18)0.0330 (14)0.0087 (13)0.0025 (11)0.0149 (13)
C60.0273 (15)0.0522 (18)0.0340 (15)0.0081 (13)0.0058 (11)0.0233 (13)
C70.0391 (18)0.080 (3)0.0383 (17)0.0101 (18)0.0097 (14)0.0334 (17)
C80.046 (2)0.084 (3)0.060 (2)0.0086 (19)0.0143 (17)0.054 (2)
C90.0449 (19)0.060 (2)0.069 (2)0.0026 (17)0.0116 (17)0.0462 (19)
C100.0298 (15)0.0463 (18)0.0511 (18)0.0047 (13)0.0087 (13)0.0334 (15)
C110.0284 (15)0.0378 (16)0.0547 (19)0.0052 (12)0.0076 (13)0.0262 (14)
C120.047 (2)0.0402 (18)0.075 (3)0.0030 (16)0.0072 (18)0.0330 (18)
C130.050 (2)0.0347 (18)0.080 (3)0.0070 (16)0.0016 (19)0.0162 (18)
C140.045 (2)0.050 (2)0.054 (2)0.0114 (17)0.0087 (16)0.0086 (16)
C150.0404 (17)0.0430 (18)0.0440 (17)0.0064 (14)0.0092 (14)0.0145 (14)
O10.0289 (11)0.0497 (13)0.0371 (11)0.0008 (9)0.0093 (8)0.0286 (10)
O20.0328 (11)0.0611 (14)0.0450 (12)0.0029 (10)0.0050 (9)0.0364 (11)
C160.0299 (14)0.0288 (13)0.0329 (14)0.0023 (11)0.0079 (11)0.0165 (11)
C170.0298 (15)0.0524 (19)0.0490 (17)0.0093 (14)0.0127 (13)0.0368 (15)
N10.063 (2)0.059 (2)0.0496 (17)0.0021 (17)0.0010 (16)0.0169 (15)
O30.120 (4)0.167 (5)0.118 (3)0.050 (3)0.041 (3)0.054 (3)
O40.083 (3)0.089 (3)0.100 (3)0.016 (2)0.025 (2)0.020 (2)
O50.164 (5)0.074 (3)0.105 (3)0.018 (3)0.020 (3)0.005 (2)
O2W0.0656 (17)0.0518 (15)0.0742 (18)0.0006 (13)0.0035 (14)0.0290 (14)
Geometric parameters (Å, º) top
Cu1—O11.917 (2)C8—C91.391 (6)
Cu1—N31.937 (3)C8—H80.9300
Cu1—N42.038 (3)C9—C101.394 (5)
Cu1—N22.049 (3)C9—H90.9300
Cu1—O1W2.260 (2)C10—C111.483 (5)
O1W—H1WA0.8501C11—C121.385 (5)
O1W—H1WB0.8501C12—C131.394 (6)
N2—C51.348 (4)C12—H120.9300
N2—C11.349 (5)C13—C141.372 (6)
N3—C101.345 (4)C13—H130.9300
N3—C61.351 (4)C14—C151.370 (5)
N4—C151.351 (4)C14—H140.9300
N4—C111.354 (4)C15—H150.9300
C1—C21.387 (5)O1—C161.285 (4)
C1—H10.9300O2—C161.230 (3)
C2—C31.376 (6)C16—C171.510 (4)
C2—H20.9300C17—C17i1.503 (6)
C3—C41.386 (6)C17—H17A0.9700
C3—H30.9300C17—H17B0.9700
C4—C51.389 (5)N1—O31.204 (6)
C4—H40.9300N1—O51.217 (5)
C5—C61.487 (5)N1—O41.231 (5)
C6—C71.383 (5)O2W—H2WA0.8499
C7—C81.390 (6)O2W—H2WB0.8500
C7—H70.9300
O1—Cu1—N3173.78 (9)C6—C7—H7120.6
O1—Cu1—N498.53 (10)C8—C7—H7120.6
N3—Cu1—N480.04 (11)C7—C8—C9121.1 (3)
O1—Cu1—N2100.55 (11)C7—C8—H8119.5
N3—Cu1—N279.94 (12)C9—C8—H8119.5
N4—Cu1—N2158.56 (11)C8—C9—C10117.8 (4)
O1—Cu1—O1W86.91 (9)C8—C9—H9121.1
N3—Cu1—O1W99.30 (10)C10—C9—H9121.1
N4—Cu1—O1W100.14 (10)N3—C10—C9120.2 (3)
N2—Cu1—O1W90.58 (10)N3—C10—C11112.8 (3)
Cu1—O1W—H1WA138.1C9—C10—C11127.0 (3)
Cu1—O1W—H1WB111.0N4—C11—C12121.6 (3)
H1WA—O1W—H1WB107.7N4—C11—C10114.1 (3)
C5—N2—C1118.7 (3)C12—C11—C10124.3 (3)
C5—N2—Cu1114.3 (2)C11—C12—C13118.9 (3)
C1—N2—Cu1127.0 (2)C11—C12—H12120.6
C10—N3—C6122.5 (3)C13—C12—H12120.6
C10—N3—Cu1118.7 (2)C14—C13—C12119.2 (3)
C6—N3—Cu1118.8 (2)C14—C13—H13120.4
C15—N4—C11118.5 (3)C12—C13—H13120.4
C15—N4—Cu1127.4 (2)C15—C14—C13119.3 (4)
C11—N4—Cu1114.1 (2)C15—C14—H14120.3
N2—C1—C2122.0 (3)C13—C14—H14120.3
N2—C1—H1119.0N4—C15—C14122.4 (3)
C2—C1—H1119.0N4—C15—H15118.8
C3—C2—C1119.0 (4)C14—C15—H15118.8
C3—C2—H2120.5C16—O1—Cu1115.18 (17)
C1—C2—H2120.5O2—C16—O1123.0 (3)
C2—C3—C4119.5 (3)O2—C16—C17121.3 (3)
C2—C3—H3120.2O1—C16—C17115.7 (2)
C4—C3—H3120.2C17i—C17—C16114.3 (3)
C3—C4—C5118.7 (4)C17i—C17—H17A108.7
C3—C4—H4120.6C16—C17—H17A108.7
C5—C4—H4120.6C17i—C17—H17B108.7
N2—C5—C4122.0 (3)C16—C17—H17B108.7
N2—C5—C6114.2 (3)H17A—C17—H17B107.6
C4—C5—C6123.8 (3)O3—N1—O5116.3 (5)
N3—C6—C7119.7 (3)O3—N1—O4123.9 (5)
N3—C6—C5112.7 (3)O5—N1—O4118.6 (5)
C7—C6—C5127.6 (3)H2WA—O2W—H2WB107.7
C6—C7—C8118.7 (3)
O1—Cu1—N2—C5174.99 (19)N2—C5—C6—N31.1 (4)
N3—Cu1—N2—C51.29 (19)C4—C5—C6—N3178.3 (3)
N4—Cu1—N2—C522.4 (4)N2—C5—C6—C7180.0 (3)
O1W—Cu1—N2—C598.0 (2)C4—C5—C6—C70.6 (5)
O1—Cu1—N2—C15.0 (3)N3—C6—C7—C81.0 (5)
N3—Cu1—N2—C1178.7 (3)C5—C6—C7—C8177.8 (3)
N4—Cu1—N2—C1157.6 (3)C6—C7—C8—C90.0 (5)
O1W—Cu1—N2—C181.9 (3)C7—C8—C9—C100.3 (5)
N4—Cu1—N3—C104.6 (2)C6—N3—C10—C92.7 (5)
N2—Cu1—N3—C10176.9 (2)Cu1—N3—C10—C9178.4 (2)
O1W—Cu1—N3—C1094.1 (2)C6—N3—C10—C11175.6 (2)
N4—Cu1—N3—C6174.3 (2)Cu1—N3—C10—C113.3 (3)
N2—Cu1—N3—C62.0 (2)C8—C9—C10—N31.6 (5)
O1W—Cu1—N3—C686.9 (2)C8—C9—C10—C11176.4 (3)
O1—Cu1—N4—C153.3 (3)C15—N4—C11—C121.7 (5)
N3—Cu1—N4—C15177.1 (3)Cu1—N4—C11—C12176.3 (2)
N2—Cu1—N4—C15156.0 (3)C15—N4—C11—C10177.2 (3)
O1W—Cu1—N4—C1585.1 (3)Cu1—N4—C11—C104.8 (3)
O1—Cu1—N4—C11178.9 (2)N3—C10—C11—N41.2 (4)
N3—Cu1—N4—C115.1 (2)C9—C10—C11—N4177.0 (3)
N2—Cu1—N4—C1126.2 (4)N3—C10—C11—C12179.9 (3)
O1W—Cu1—N4—C1192.7 (2)C9—C10—C11—C122.0 (5)
C5—N2—C1—C20.2 (5)N4—C11—C12—C131.4 (5)
Cu1—N2—C1—C2179.8 (2)C10—C11—C12—C13177.4 (3)
N2—C1—C2—C30.6 (5)C11—C12—C13—C140.3 (5)
C1—C2—C3—C40.6 (5)C12—C13—C14—C151.7 (6)
C2—C3—C4—C50.2 (5)C11—N4—C15—C140.3 (5)
C1—N2—C5—C40.1 (4)Cu1—N4—C15—C14177.4 (3)
Cu1—N2—C5—C4179.9 (2)C13—C14—C15—N41.5 (5)
C1—N2—C5—C6179.5 (3)N4—Cu1—O1—C1690.9 (2)
Cu1—N2—C5—C60.5 (3)N2—Cu1—O1—C1679.3 (2)
C3—C4—C5—N20.1 (5)O1W—Cu1—O1—C16169.3 (2)
C3—C4—C5—C6179.5 (3)Cu1—O1—C16—O21.2 (4)
C10—N3—C6—C72.4 (4)Cu1—O1—C16—C17179.5 (2)
Cu1—N3—C6—C7178.7 (2)O2—C16—C17—C17i145.5 (4)
C10—N3—C6—C5176.6 (2)O1—C16—C17—C17i36.1 (5)
Cu1—N3—C6—C52.3 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1ii0.852.333.101 (4)150
O2W—H2WA···O3iii0.852.323.138 (7)162
O1W—H1WB···O2W0.851.982.831 (4)174
O1W—H1WA···O2iv0.851.922.755 (3)167
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C4H4O4)(C15H11N3)2(H2O)2](NO3)2·2H2O
Mr905.77
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.397 (4), 10.650 (5), 12.574 (6)
α, β, γ (°)70.196 (9), 83.512 (9), 83.836 (10)
V3)923.5 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.34 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.679, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
4998, 3211, 2951
Rint0.096
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 0.98
No. of reflections3211
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.917 (2)Cu1—N22.049 (3)
Cu1—N31.937 (3)Cu1—O1W2.260 (2)
Cu1—N42.038 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WB···O1i0.852.333.101 (4)150.4
O2W—H2WA···O3ii0.852.323.138 (7)162.4
O1W—H1WB···O2W0.851.982.831 (4)173.8
O1W—H1WA···O2iii0.851.922.755 (3)166.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem. 153, 1–8.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuangthongyou, T. & Siripaisarnpipat, S. (2008). Acta Cryst. E64, m560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Q. & Huang, B.-J. (2008). Acta Cryst. E64, m237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, S., Wang, D., Yu, Y., Luo, G. & Ye, Y. (2008). Acta Cryst. E64, m448–m449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKe, X.-J., Li, D.-S., Zhao, J., He, Q.-F. & Li, C. (2009). Acta Cryst. E65, m527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-F., Wang, C.-X. & Wang, P. (2009). Acta Cryst. E65, m1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-W. (2009). Acta Cryst. E65, m574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNg, S. W. (1998). Acta Cryst. C54, 745–750.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr. 211, 808–810.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages m346-m347
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds