organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[4,5-di­methyl-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenol monohydrate

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Campus, Islamic Azad University, Poonak, Tehran, Iran, and cMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 17 January 2010; accepted 23 January 2010; online 6 February 2010)

In the title compound, C24H24N2O4·H2O, the dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 65.06 (9) and 3.02 (9)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The H atoms of the water mol­ecule act as donors in the formation of bifurcated O—H⋯(O,O) inter­molecular hydrogen bonds with the O atoms of the hydr­oxy and meth­oxy groups with R12(5) ring motifs; these may influence the mol­ecular conformation.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Cakir et al. (2002[Cakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci. 18, 377-377.]); Eltayeb & Ahmed (2005[Eltayeb, N. E. & Ahmed, T. A. (2005). J. Sci. Tech. 6, 51-59.]); Eltayeb et al. (2007[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094-o3095.]); Kargar et al. (2009[Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776-o777.]). For background to the applications of Schiff base ligands as thermochromic and photochromic materials, see: Hajioudis et al. (1987[Hajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1351.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N2O4·H2O

  • Mr = 422.47

  • Triclinic, [P \overline 1]

  • a = 8.7431 (5) Å

  • b = 10.3049 (6) Å

  • c = 13.6614 (7) Å

  • α = 69.556 (3)°

  • β = 83.846 (3)°

  • γ = 70.280 (3)°

  • V = 1085.6 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.987

  • 23270 measured reflections

  • 5369 independent reflections

  • 2912 reflections with I > 2I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.141

  • S = 1.01

  • 5369 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.96 1.72 2.5929 (18) 150
O2—H2⋯N2 0.96 1.66 2.5704 (18) 156
O1W—H1W⋯O1 0.97 2.21 3.050 (2) 144
O1W—H1W⋯O3 0.97 2.50 3.366 (2) 148
O1W—H2W⋯O2 0.97 2.15 3.079 (2) 160
O1W—H2W⋯O4 0.97 2.55 3.271 (2) 131

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are one of the most prevalent systems in coordination chemistry. They can show thermochromic and photochromic properties (Hajioudis et al. (1987). As part of a general study of tetradenate Schiff bases (Kargar et al. 2009), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base ligand and a water molecule of crystallization. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and comparable to previously reported structures (Eltayeb & Ahmed, 2005; Eltayeb et al., 2007; Cakir et al. 2002; Kargar et al., 2009 ). The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 65.06 (9) and 3.02 (9)°. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The hydrogen atoms of the water molecule form bifurcated intermolecular hydrogen bonds with the oxygen atoms of the hydroxy and methoxy groups with R21(5) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration (Table 1). A view of part of the crystal structure is shown in Fig .2.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Cakir et al. (2002); Eltayeb & Ahmed (2005); Eltayeb et al. (2007); Kargar et al. (2009). For background to the applications of Schiff base ligands as thermochromic and photochromic materials, see: Hajioudis et al. (1987).

Experimental top

The title compound was synthesized by adding 3-methoxy-salicylaldehyde (4 mmol) to a solution of 4,5-dimethyl-o-phenylenediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups of the Schiff base and water were located in a difference Fourier map. Initially the O-H distances were restrained to 0.96 (1) and 0.98 (1) Å, respectively and in the final cycles of refinement these H atoms were allowed to ride on the parent O atom with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C-H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Intra- and intermolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound wieved along the a-axis. Hydrogen bonds are shown as dashed lines.
6,6'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol monohydrate top
Crystal data top
C24H24N2O4·H2OZ = 2
Mr = 422.47F(000) = 448
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7431 (5) ÅCell parameters from 5124 reflections
b = 10.3049 (6) Åθ = 2.2–25.0°
c = 13.6614 (7) ŵ = 0.09 mm1
α = 69.556 (3)°T = 296 K
β = 83.846 (3)°Block, yellow
γ = 70.280 (3)°0.30 × 0.20 × 0.15 mm
V = 1085.6 (1) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5369 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2˘I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.973, Tmax = 0.987k = 1213
23270 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1326P]
where P = (Fo2 + 2Fc2)/3
5369 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H24N2O4·H2Oγ = 70.280 (3)°
Mr = 422.47V = 1085.6 (1) Å3
Triclinic, P1Z = 2
a = 8.7431 (5) ÅMo Kα radiation
b = 10.3049 (6) ŵ = 0.09 mm1
c = 13.6614 (7) ÅT = 296 K
α = 69.556 (3)°0.30 × 0.20 × 0.15 mm
β = 83.846 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5369 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2912 reflections with I > 2˘I)
Tmin = 0.973, Tmax = 0.987Rint = 0.031
23270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
5369 reflectionsΔρmin = 0.18 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48196 (13)0.46281 (13)0.27727 (9)0.0574 (3)
H10.55310.40270.33620.086*
O20.58907 (14)0.10375 (12)0.31399 (9)0.0563 (3)
H20.64630.11020.36780.084*
O30.34071 (17)0.62867 (15)0.09838 (10)0.0749 (4)
O40.45471 (16)0.01221 (14)0.20011 (10)0.0692 (4)
N10.74540 (15)0.32782 (13)0.39027 (10)0.0436 (3)
N20.74691 (15)0.04912 (14)0.47979 (10)0.0438 (3)
C10.5789 (2)0.51020 (17)0.19880 (12)0.0465 (4)
C20.5055 (2)0.59934 (18)0.10105 (13)0.0549 (5)
C30.5987 (3)0.6496 (2)0.01908 (14)0.0687 (6)
H3A0.55020.70810.04590.082*
C40.7642 (3)0.6143 (2)0.03171 (15)0.0733 (6)
H4A0.82620.64840.02490.088*
C50.8378 (2)0.5294 (2)0.12719 (14)0.0630 (5)
H5A0.94890.50760.13540.076*
C60.7458 (2)0.47583 (17)0.21197 (12)0.0469 (4)
C70.8237 (2)0.38539 (17)0.31301 (13)0.0466 (4)
H7A0.93350.36920.32140.056*
C80.82177 (17)0.24595 (16)0.48957 (11)0.0401 (4)
C90.88484 (19)0.30867 (18)0.54329 (13)0.0475 (4)
H9A0.88440.40460.51100.057*
C100.94858 (19)0.2329 (2)0.64369 (13)0.0496 (4)
C110.95310 (19)0.0878 (2)0.69018 (12)0.0507 (4)
C120.88856 (19)0.02546 (18)0.63693 (12)0.0493 (4)
H12A0.89140.07120.66850.059*
C130.81949 (17)0.10333 (17)0.53748 (12)0.0410 (4)
C140.74023 (18)0.08139 (17)0.51154 (13)0.0467 (4)
H14A0.78640.14590.57590.056*
C150.66348 (18)0.13050 (17)0.45037 (13)0.0455 (4)
C160.6581 (2)0.27411 (18)0.48757 (15)0.0563 (5)
H16A0.70390.33700.55240.068*
C170.5870 (2)0.32238 (19)0.43002 (16)0.0605 (5)
H17A0.58420.41790.45560.073*
C180.5181 (2)0.2296 (2)0.33301 (16)0.0589 (5)
H18A0.46990.26370.29400.071*
C190.5206 (2)0.08833 (19)0.29418 (14)0.0517 (4)
C200.59181 (18)0.03598 (17)0.35303 (13)0.0458 (4)
C210.2574 (3)0.7227 (2)0.00270 (16)0.0918 (8)
H21A0.14380.73350.01060.138*
H21B0.30060.68140.05140.138*
H21C0.27150.81680.01570.138*
C220.4007 (3)0.0392 (3)0.13155 (17)0.0840 (7)
H22A0.35460.04120.06970.126*
H22B0.31980.08340.16540.126*
H22C0.49080.11040.11290.126*
C231.0072 (2)0.3092 (2)0.70012 (15)0.0693 (6)
H23A0.99460.40770.65540.104*
H23B1.11980.25800.71880.104*
H23C0.94470.31060.76220.104*
C241.0284 (2)0.0036 (3)0.79731 (14)0.0789 (7)
H24A0.97680.04470.84660.118*
H24B1.14230.01570.79500.118*
H24C1.01370.09770.81830.118*
O1W0.25045 (16)0.32247 (16)0.23580 (10)0.0795 (4)
H1W0.29530.40120.22380.119*
H2W0.35470.24630.24670.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0557 (7)0.0600 (8)0.0444 (7)0.0177 (6)0.0123 (6)0.0001 (6)
O20.0718 (8)0.0398 (7)0.0541 (7)0.0176 (6)0.0099 (6)0.0094 (5)
O30.0744 (9)0.0733 (9)0.0556 (8)0.0061 (7)0.0298 (7)0.0043 (7)
O40.0853 (9)0.0595 (8)0.0662 (9)0.0225 (7)0.0143 (7)0.0214 (7)
N10.0496 (8)0.0390 (7)0.0354 (7)0.0115 (6)0.0089 (6)0.0044 (6)
N20.0436 (7)0.0394 (8)0.0416 (8)0.0102 (6)0.0013 (6)0.0088 (6)
C10.0625 (10)0.0373 (9)0.0362 (9)0.0140 (8)0.0068 (8)0.0078 (7)
C20.0712 (12)0.0433 (10)0.0424 (10)0.0082 (9)0.0148 (9)0.0104 (8)
C30.1010 (17)0.0537 (12)0.0371 (10)0.0130 (11)0.0127 (10)0.0058 (9)
C40.0947 (17)0.0735 (14)0.0409 (11)0.0281 (12)0.0079 (10)0.0076 (10)
C50.0733 (12)0.0650 (12)0.0466 (11)0.0248 (10)0.0049 (9)0.0125 (9)
C60.0592 (10)0.0412 (9)0.0377 (9)0.0143 (8)0.0039 (8)0.0108 (7)
C70.0499 (9)0.0434 (9)0.0439 (10)0.0111 (8)0.0065 (8)0.0130 (8)
C80.0354 (8)0.0404 (9)0.0347 (8)0.0052 (6)0.0040 (6)0.0064 (7)
C90.0458 (9)0.0467 (10)0.0458 (10)0.0111 (7)0.0050 (7)0.0125 (8)
C100.0394 (9)0.0627 (11)0.0426 (9)0.0089 (8)0.0027 (7)0.0192 (9)
C110.0405 (9)0.0648 (12)0.0348 (9)0.0055 (8)0.0033 (7)0.0123 (8)
C120.0457 (9)0.0437 (9)0.0400 (9)0.0032 (7)0.0007 (7)0.0026 (7)
C130.0352 (8)0.0433 (9)0.0363 (8)0.0057 (7)0.0001 (6)0.0099 (7)
C140.0420 (9)0.0428 (10)0.0437 (9)0.0084 (7)0.0034 (7)0.0064 (8)
C150.0383 (8)0.0391 (9)0.0527 (10)0.0088 (7)0.0081 (7)0.0132 (8)
C160.0506 (10)0.0421 (10)0.0660 (12)0.0133 (8)0.0086 (9)0.0099 (9)
C170.0549 (11)0.0407 (10)0.0834 (14)0.0200 (8)0.0131 (10)0.0169 (10)
C180.0511 (10)0.0542 (11)0.0801 (14)0.0199 (9)0.0106 (10)0.0329 (11)
C190.0472 (9)0.0464 (10)0.0590 (11)0.0115 (8)0.0041 (8)0.0190 (9)
C200.0415 (9)0.0387 (9)0.0554 (10)0.0116 (7)0.0079 (8)0.0171 (8)
C210.1047 (17)0.0766 (15)0.0687 (14)0.0037 (13)0.0514 (13)0.0104 (12)
C220.1109 (18)0.0963 (17)0.0642 (14)0.0490 (14)0.0015 (12)0.0350 (13)
C230.0644 (12)0.0936 (16)0.0568 (12)0.0233 (11)0.0064 (9)0.0333 (11)
C240.0728 (13)0.0990 (17)0.0419 (11)0.0162 (12)0.0161 (9)0.0021 (11)
O1W0.0693 (9)0.0887 (11)0.0677 (9)0.0254 (8)0.0075 (7)0.0086 (8)
Geometric parameters (Å, º) top
O1—C11.3511 (19)C11—C121.385 (2)
O1—H10.9574C11—C241.512 (2)
O2—C201.3422 (18)C12—C131.394 (2)
O2—H20.9642C12—H12A0.9300
O3—C21.371 (2)C14—C151.432 (2)
O3—C211.422 (2)C14—H14A0.9300
O4—C191.372 (2)C15—C161.402 (2)
O4—C221.411 (2)C15—C201.404 (2)
N1—C71.271 (2)C16—C171.356 (3)
N1—C81.4186 (18)C16—H16A0.9300
N2—C141.281 (2)C17—C181.389 (3)
N2—C131.411 (2)C17—H17A0.9300
C1—C61.396 (2)C18—C191.372 (2)
C1—C21.403 (2)C18—H18A0.9300
C2—C31.367 (3)C19—C201.401 (2)
C3—C41.382 (3)C21—H21A0.9600
C3—H3A0.9300C21—H21B0.9600
C4—C51.373 (3)C21—H21C0.9600
C4—H4A0.9300C22—H22A0.9600
C5—C61.395 (2)C22—H22B0.9600
C5—H5A0.9300C22—H22C0.9600
C6—C71.453 (2)C23—H23A0.9600
C7—H7A0.9300C23—H23B0.9600
C8—C91.385 (2)C23—H23C0.9600
C8—C131.391 (2)C24—H24A0.9600
C9—C101.387 (2)C24—H24B0.9600
C9—H9A0.9300C24—H24C0.9600
C10—C111.394 (2)O1W—H1W0.9731
C10—C231.502 (2)O1W—H2W0.9664
C1—O1—H1105.3N2—C14—H14A119.2
C20—O2—H2101.6C15—C14—H14A119.2
C2—O3—C21117.48 (16)C16—C15—C20119.09 (16)
C19—O4—C22117.25 (15)C16—C15—C14120.16 (16)
C7—N1—C8120.70 (13)C20—C15—C14120.75 (15)
C14—N2—C13123.85 (14)C17—C16—C15120.75 (17)
O1—C1—C6122.82 (14)C17—C16—H16A119.6
O1—C1—C2117.44 (16)C15—C16—H16A119.6
C6—C1—C2119.74 (16)C16—C17—C18120.21 (17)
C3—C2—O3125.95 (16)C16—C17—H17A119.9
C3—C2—C1119.61 (18)C18—C17—H17A119.9
O3—C2—C1114.44 (16)C19—C18—C17120.71 (18)
C2—C3—C4120.71 (17)C19—C18—H18A119.6
C2—C3—H3A119.6C17—C18—H18A119.6
C4—C3—H3A119.6C18—C19—O4125.26 (17)
C5—C4—C3120.52 (19)C18—C19—C20119.90 (17)
C5—C4—H4A119.7O4—C19—C20114.83 (15)
C3—C4—H4A119.7O2—C20—C19118.51 (15)
C4—C5—C6119.97 (19)O2—C20—C15122.17 (15)
C4—C5—H5A120.0C19—C20—C15119.32 (15)
C6—C5—H5A120.0O3—C21—H21A109.5
C5—C6—C1119.44 (15)O3—C21—H21B109.5
C5—C6—C7120.03 (16)H21A—C21—H21B109.5
C1—C6—C7120.54 (15)O3—C21—H21C109.5
N1—C7—C6121.65 (15)H21A—C21—H21C109.5
N1—C7—H7A119.2H21B—C21—H21C109.5
C6—C7—H7A119.2O4—C22—H22A109.5
C9—C8—C13119.56 (14)O4—C22—H22B109.5
C9—C8—N1121.60 (14)H22A—C22—H22B109.5
C13—C8—N1118.58 (14)O4—C22—H22C109.5
C8—C9—C10122.06 (16)H22A—C22—H22C109.5
C8—C9—H9A119.0H22B—C22—H22C109.5
C10—C9—H9A119.0C10—C23—H23A109.5
C9—C10—C11118.54 (16)C10—C23—H23B109.5
C9—C10—C23119.63 (17)H23A—C23—H23B109.5
C11—C10—C23121.82 (15)C10—C23—H23C109.5
C12—C11—C10119.41 (14)H23A—C23—H23C109.5
C12—C11—C24119.24 (17)H23B—C23—H23C109.5
C10—C11—C24121.35 (17)C11—C24—H24A109.5
C11—C12—C13121.97 (16)C11—C24—H24B109.5
C11—C12—H12A119.0H24A—C24—H24B109.5
C13—C12—H12A119.0C11—C24—H24C109.5
C8—C13—C12118.37 (15)H24A—C24—H24C109.5
C8—C13—N2116.34 (13)H24B—C24—H24C109.5
C12—C13—N2125.28 (15)H1W—O1W—H2W95.0
N2—C14—C15121.63 (15)
C21—O3—C2—C31.7 (3)C10—C11—C12—C130.3 (2)
C21—O3—C2—C1177.79 (17)C24—C11—C12—C13179.15 (15)
O1—C1—C2—C3179.75 (16)C9—C8—C13—C123.1 (2)
C6—C1—C2—C31.2 (3)N1—C8—C13—C12177.31 (14)
O1—C1—C2—O30.7 (2)C9—C8—C13—N2177.27 (13)
C6—C1—C2—O3178.33 (15)N1—C8—C13—N23.0 (2)
O3—C2—C3—C4178.97 (18)C11—C12—C13—C82.5 (2)
C1—C2—C3—C40.5 (3)C11—C12—C13—N2177.89 (14)
C2—C3—C4—C50.7 (3)C14—N2—C13—C8177.54 (14)
C3—C4—C5—C61.1 (3)C14—N2—C13—C122.1 (2)
C4—C5—C6—C10.4 (3)C13—N2—C14—C15179.30 (14)
C4—C5—C6—C7179.75 (18)N2—C14—C15—C16179.90 (15)
O1—C1—C6—C5179.76 (16)N2—C14—C15—C200.3 (2)
C2—C1—C6—C50.7 (2)C20—C15—C16—C171.0 (2)
O1—C1—C6—C70.1 (2)C14—C15—C16—C17179.45 (16)
C2—C1—C6—C7179.11 (15)C15—C16—C17—C180.0 (3)
C8—N1—C7—C6176.84 (14)C16—C17—C18—C190.2 (3)
C5—C6—C7—N1175.85 (16)C17—C18—C19—O4179.23 (16)
C1—C6—C7—N14.3 (2)C17—C18—C19—C200.6 (3)
C7—N1—C8—C961.2 (2)C22—O4—C19—C189.5 (3)
C7—N1—C8—C13124.72 (17)C22—O4—C19—C20171.84 (16)
C13—C8—C9—C100.9 (2)C18—C19—C20—O2178.50 (15)
N1—C8—C9—C10174.99 (14)O4—C19—C20—O20.3 (2)
C8—C9—C10—C111.9 (2)C18—C19—C20—C151.5 (2)
C8—C9—C10—C23176.79 (15)O4—C19—C20—C15179.69 (14)
C9—C10—C11—C122.5 (2)C16—C15—C20—O2178.33 (14)
C23—C10—C11—C12176.17 (15)C14—C15—C20—O21.3 (2)
C9—C10—C11—C24176.97 (16)C16—C15—C20—C191.7 (2)
C23—C10—C11—C244.4 (3)C14—C15—C20—C19178.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.961.722.5929 (18)150
O1W—H1W···O10.972.213.050 (2)144
O1W—H1W···O30.972.503.366 (2)148
O2—H2···N20.961.662.5704 (18)156
O1W—H2W···O20.972.153.079 (2)160
O1W—H2W···O40.972.553.271 (2)131

Experimental details

Crystal data
Chemical formulaC24H24N2O4·H2O
Mr422.47
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.7431 (5), 10.3049 (6), 13.6614 (7)
α, β, γ (°)69.556 (3), 83.846 (3), 70.280 (3)
V3)1085.6 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2˘I)] reflections
23270, 5369, 2912
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.141, 1.01
No. of reflections5369
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96001.72002.5929 (18)150.00
O1W—H1W···O10.97002.21003.050 (2)144.00
O1W—H1W···O30.97002.50003.366 (2)148.00
O2—H2···N20.96001.66002.5704 (18)156.00
O1W—H2W···O20.97002.15003.079 (2)160.00
O1W—H2W···O40.97002.55003.271 (2)131.00
 

Footnotes

Thomson Reuters Researcher ID: A-5471-2009.

Acknowledgements

HK and AJ thank PNU for financial support. IUK thanks GC University of Lahore, Pakistan, for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci. 18, 377–377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005). J. Sci. Tech. 6, 51–59.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1351.  Google Scholar
First citationKargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o776–o777.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds