organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o502-o503

(5-Ammonio­pent­yl)tri­phenyl­phospho­nium dibromide ethanol solvate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: cevans@chemistry.otago.ac.nz

(Received 11 January 2010; accepted 25 January 2010; online 3 February 2010)

The alkyl­ammonium chain of the dication in the title mitochondrially targeted (5-ammonio­pent­yl)triphenyl­­phos­pho­nium dibromide ethanol solvate, C23H28NP2+·2Br·C2H6O, is almost planar (r.m.s deviation = 0.0716 Å for all non-H atoms) and in the extended form, maximizing the P⋯N distance [7.716 (2) Å]. The ions and solvent are linked within the crystal by N—H⋯Br, N—H⋯O and O—H⋯Br hydrogen-bonding inter­actions, forming C32(6) chains along the b axis, with secondary C—H⋯Br and C—H⋯O inter­actions cross-linking the chains.

Related literature

For the development and applications of mitochondrially targeted bio-active compounds, see: Murphy & Smith (2007[Murphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol. 47, 629-656.]); Porteous et al. (2010[Porteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.]); Prime et al. (2009[Prime, T. A., Blaikie, F. H., Evans, C., Nadtochiy, S. M., James, A. M., Dahm, C. C., Vitturi, D. A., Patel, R. P., Hiley, C. R., Abakumova, I., Requejo, R., Chouchani, E. T., Hurd, T. R., Garvey, J. F., Taylor, C. T., Brookes, P. S., Smith, R. A. J. & Murphy, M. P. (2009). Proc. Natl Acad. Sci. 106, 10764-10769.]). For the synthesis and applications of amino­alkyl triphenyl­phospho­nium salts, see: Issleib & Rieschel (1965[Issleib, K. & Rieschel, R. (1965). Chem. Ber. 98, 2086-2090.]); Keough & Grayson (1964[Keough, P. & Grayson, M. (1964). J. Org. Chem. 29, 631-635.]); McAllister et al. (1980[McAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem. 23, 862-865.]). For related structures, see: Czerwinski (1986[Czerwinski, E. W. (1986). Acta Cryst. C42, 236-239.]); Dubourg et al. (1986[Dubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112-114.]). For a review of hydrogen-bonding networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H28NP2+·2Br·C2H6O

  • Mr = 555.32

  • Orthorhombic, P b c a

  • a = 16.600 (3) Å

  • b = 11.947 (2) Å

  • c = 26.257 (5) Å

  • V = 5207.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.19 mm−1

  • T = 89 K

  • 0.27 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 0.450

  • 98142 measured reflections

  • 5323 independent reflections

  • 4470 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.04

  • 5323 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.89 1.9 2.790 (3) 177
N1—H1D⋯Br1ii 0.89 2.34 3.2226 (18) 170
O1—H1⋯Br2 0.82 2.43 3.2397 (16) 170
N1—H1E⋯Br2 0.89 2.4 3.2814 (18) 168
C13—H13⋯O1iii 0.93 2.66 3.584 (3) 172
C34—H34⋯Br2iv 0.93 3 3.729 (2) 137
C1—H1A⋯Br1v 0.97 2.92 3.836 (2) 159
C99—H99B⋯Br1v 0.96 2.92 3.849 (3) 163
C1—H1B⋯Br1 0.97 2.92 3.886 (2) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, y+1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In the course of our research in mitochondrially targeted bio-active agents (Murphy & Smith, 2007), 5-ammoniopentyl triphenylphosphonium dibromide was prepared as a precursor for both a targeted thionitrite (Prime et al., 2009) and an iodoacetamide (Porteous et al., 2010). Aminoalkyl-triphenylphosphonium salts are well known (McAllister et al., 1980; Keough & Grayson, 1964; Issleib & Rieschel, 1965) but to date only dimethylamino-3-propyl triphenylphosphonium chloride (Dubourg et al., 1986) and 2-aminoethyl triphenylphosphonium bromide hydrogen bromide (Czerwinski, 1986) have been structurally characterized. The latter is clearly a dication with two bromide anions whereas the former contains a singly charged aminoalkyl triphenylphosphonium cation.

The asymmetric unit (Fig. 1) of the title compound contains one dication, two bromide ions and an ethanol of cystallization. The C(1)—P(1) and C(5)—N(1) distances [1.8020 (19)Å and 1.496 (3)Å respectively] are comparable to those published for the singly charged dimethylamino-propyl [1.802 (3)Å and 1.496 (9) Å; Dubourg et al., 1986] and dicationic 2-aminoethyl [1.796 (5)Å and 1.512 (6) Å; Czerwinski, 1986] structures, indicating that the charge and increased alkyl chain length have no appreciable effect on these parameters. The P(1)···N(1) chain is almost planar [r.m.s for all non-H atoms of 0.0716] and is in the extended form as indicated by the P—C, C—C, and C—N torsion angles [P—C(1)—C(2)—C(3) 178.55 (15)°, C(1)—C(2)—C(3)—C(4) -172.83 (17)°,C(2)—C(3)—C(4)—C(5) 173.97 (18)°, C(3)—C(4)—C(5)—N(1) 172.94 (17)°].

The hydrogen bonding network is dominated by a C23(6) chain motif (Bernstein et al., 1995) linking the dication, Br(2) and the solvent molecule (Fig. 2). The chains are comprised of N(1)—H(1C)···O(1)—H(1)···Br(2)···H(1E) interactions [N(1)···O(1) 2.790 (3) Å, O(1)···Br(2) 3.2397 (16) Å, N(1)···Br(2) 3.2814 (18) Å] which form linkages along the b axis. These chains are in turn cross-linked at longer distances by C(13)—H(13)···O(1) [C(13)···O(1) 3.584 (3) Å] and C(34)—H(34)···Br(2) [C(34)···Br(2) 3.729 (2) Å] interactions. In addition, Br(1) adopts an approximately square planar arrangement (r.m.s 0.2377) with contacts to C(1) in a trans configuration linking adjacent dications [C(1)···Br(1) 3.836 (2) Å, C(1)···Br(1) 3.886 (2) Å], and contacts to N(1)—H(1D) [N(1)···Br(1) 3.2226 (18) Å] and C(99)—H99(B) [C(99)···Br(1) 3.849 (3) Å] linking the dication and solvent.

Related literature top

For the development and applications of mitochondrially targeted bio-active compounds, see: Murphy & Smith (2007); Porteous et al. (2010); Prime et al. (2009). For the synthesis and applications of aminoalkyl triphenylphosphonium salts, see: Issleib & Rieschel (1965); Keough & Grayson (1964); McAllister et al. (1980). For related structures, see: Czerwinski (1986); Dubourg et al. (1986). For a review of hydrogen-bonding networks, see: Bernstein et al. (1995);

Experimental top

The title compound was prepared using a modified procedure to that published (McAllister et al., 1980). Crystalline 5-bromopentyl-amine hydrogen bromide (3 mmol) and excess triphenylphosphine (9 mmol) were heated under an inert atmosphere to 100°C and stirred for 72 h. After cooling to room temperature, the mixture was dissolved in ethanol (5 mL) and added to diethyl ether (20 mL) to precipitate the compound. Crystals of suitable quality were grown by diffusion of diethylether into an ethanolic solution of the compound.

Refinement top

All H-atoms were positioned geometrically (OH allowed to rotate but not to tip) and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 0.96 Å, Uiso = 1.5Ueq (C) for CH3 0.89 Å, Uiso = 1.5Ueq (N) for the NH3 atoms and 0.82Å, Uiso = U1.5eq (O) for the OH atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).; software used to prepare material for publication: WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing the atom labelling scheme. Ellipsoids are drawn at the 50% probability level with H atoms represented by spheres of arbitrary size.
[Figure 2] Fig. 2. The dominant hydrogen-bond contacts drawn as dashed lines forming C23(6) chains along the b axis.
(5-Ammoniopentyl)triphenylphosphonium dibromide ethanol solvate top
Crystal data top
C23H28NP2+·2Br·C2H6OF(000) = 2272
Mr = 555.32Dx = 1.417 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8129 reflections
a = 16.600 (3) Åθ = 2.6–26.2°
b = 11.947 (2) ŵ = 3.19 mm1
c = 26.257 (5) ÅT = 89 K
V = 5207.3 (18) Å3Prism, colourless
Z = 80.27 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5323 independent reflections
Radiation source: fine-focus sealed tube4470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2020
Tmin = 0.379, Tmax = 0.450k = 1414
98142 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0205P)2 + 4.4181P]
where P = (Fo2 + 2Fc2)/3
5323 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H28NP2+·2Br·C2H6OV = 5207.3 (18) Å3
Mr = 555.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.600 (3) ŵ = 3.19 mm1
b = 11.947 (2) ÅT = 89 K
c = 26.257 (5) Å0.27 × 0.25 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4470 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.450Rint = 0.063
98142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
5323 reflectionsΔρmin = 0.33 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.03376 (11)0.67164 (17)0.33559 (7)0.0157 (4)
H1A0.0480.61740.30960.019*
H1B0.02420.74280.31890.019*
C20.04374 (12)0.63369 (19)0.36243 (8)0.0193 (4)
H2A0.05840.68890.38790.023*
H2B0.03350.56360.37990.023*
C30.11389 (12)0.61792 (18)0.32598 (7)0.0187 (4)
H3A0.12920.68980.31180.022*
H3B0.09760.56960.29820.022*
C40.18562 (12)0.56646 (17)0.35333 (8)0.0184 (4)
H4A0.20490.61860.37890.022*
H4B0.16830.4990.37070.022*
C50.25410 (13)0.5377 (2)0.31770 (8)0.0248 (5)
H5A0.23760.47810.29490.03*
H5B0.26780.60260.29730.03*
C110.10746 (12)0.81365 (16)0.41553 (7)0.0145 (4)
C120.04349 (12)0.88679 (18)0.40813 (8)0.0200 (5)
H120.00240.86860.38550.024*
C130.04125 (13)0.98715 (19)0.43472 (8)0.0249 (5)
H130.00121.03670.42970.03*
C140.10222 (13)1.01350 (19)0.46868 (8)0.0241 (5)
H140.10011.08050.48660.029*
C150.16599 (13)0.94130 (18)0.47611 (8)0.0224 (5)
H150.20680.95990.49890.027*
C160.16931 (12)0.84124 (17)0.44969 (8)0.0190 (4)
H160.21230.79250.45460.023*
C210.21088 (11)0.69250 (17)0.34621 (7)0.0155 (4)
C220.22483 (13)0.78484 (18)0.31458 (8)0.0210 (5)
H220.18460.83780.30950.025*
C230.29898 (13)0.7969 (2)0.29092 (8)0.0244 (5)
H230.30870.85860.27020.029*
C240.35848 (13)0.71784 (19)0.29802 (8)0.0234 (5)
H240.40820.72690.28220.028*
C250.34490 (13)0.62523 (19)0.32838 (8)0.0241 (5)
H250.38480.57130.33230.029*
C260.27107 (12)0.61296 (18)0.35303 (8)0.0216 (5)
H260.26210.55160.37410.026*
C310.11586 (11)0.56603 (16)0.42049 (8)0.0162 (4)
C320.11609 (13)0.45969 (18)0.39805 (8)0.0225 (5)
H320.11730.45280.36280.027*
C330.11454 (13)0.36506 (19)0.42816 (9)0.0266 (5)
H330.11560.29450.41320.032*
C340.11135 (13)0.3750 (2)0.48077 (9)0.0286 (5)
H340.10950.31120.5010.034*
C350.11098 (13)0.47944 (19)0.50297 (8)0.0270 (5)
H350.10940.48560.53830.032*
C360.11300 (12)0.57552 (18)0.47341 (8)0.0206 (5)
H360.11250.64570.48870.025*
N10.32613 (10)0.50107 (16)0.34763 (7)0.0234 (4)
H1C0.34410.5580.36630.035*
H1D0.36470.47870.32640.035*
H1E0.31240.44470.3680.035*
P10.11631 (3)0.68613 (4)0.379672 (19)0.01355 (11)
Br10.026856 (12)0.951555 (17)0.270710 (8)0.01980 (6)
Br20.273685 (13)0.321417 (17)0.436159 (8)0.02177 (6)
O10.11446 (9)0.18279 (13)0.40281 (7)0.0322 (4)
H10.15430.21380.41470.048*
C980.07010 (15)0.2606 (2)0.37272 (13)0.0492 (8)
H98A0.06940.33240.38990.059*
H98B0.01490.23490.36990.059*
C990.1044 (2)0.2760 (2)0.31995 (12)0.0539 (8)
H99A0.16010.29710.32240.081*
H99B0.0750.33350.30250.081*
H99C0.10.2070.30140.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (10)0.0185 (11)0.0124 (9)0.0011 (8)0.0016 (8)0.0001 (8)
C20.0157 (10)0.0247 (11)0.0174 (10)0.0028 (9)0.0001 (8)0.0004 (9)
C30.0181 (10)0.0232 (11)0.0147 (10)0.0009 (9)0.0008 (8)0.0014 (9)
C40.0156 (10)0.0211 (11)0.0186 (10)0.0001 (8)0.0014 (8)0.0027 (9)
C50.0172 (10)0.0341 (13)0.0232 (11)0.0031 (10)0.0028 (9)0.0005 (10)
C110.0168 (10)0.0140 (10)0.0128 (9)0.0009 (8)0.0026 (8)0.0000 (8)
C120.0199 (11)0.0232 (12)0.0171 (10)0.0005 (9)0.0033 (8)0.0002 (9)
C130.0259 (12)0.0209 (12)0.0277 (12)0.0086 (9)0.0014 (10)0.0008 (9)
C140.0304 (12)0.0192 (11)0.0226 (12)0.0015 (10)0.0053 (10)0.0065 (9)
C150.0211 (11)0.0259 (12)0.0203 (11)0.0048 (9)0.0023 (9)0.0041 (9)
C160.0158 (10)0.0193 (11)0.0219 (11)0.0000 (9)0.0017 (9)0.0000 (9)
C210.0135 (9)0.0192 (11)0.0139 (10)0.0015 (8)0.0004 (8)0.0032 (8)
C220.0199 (11)0.0235 (11)0.0195 (11)0.0004 (9)0.0004 (9)0.0020 (9)
C230.0224 (11)0.0324 (13)0.0184 (11)0.0040 (10)0.0020 (9)0.0050 (10)
C240.0164 (10)0.0393 (14)0.0145 (10)0.0052 (10)0.0022 (8)0.0058 (10)
C250.0168 (11)0.0310 (13)0.0244 (12)0.0057 (9)0.0005 (9)0.0050 (10)
C260.0213 (11)0.0218 (11)0.0216 (11)0.0001 (9)0.0001 (9)0.0004 (9)
C310.0133 (9)0.0166 (10)0.0187 (10)0.0005 (8)0.0005 (8)0.0035 (8)
C320.0240 (11)0.0210 (11)0.0227 (11)0.0016 (9)0.0007 (9)0.0000 (9)
C330.0250 (12)0.0166 (11)0.0383 (14)0.0019 (9)0.0026 (10)0.0014 (10)
C340.0232 (12)0.0263 (13)0.0362 (14)0.0029 (10)0.0065 (10)0.0155 (11)
C350.0285 (12)0.0316 (14)0.0209 (11)0.0051 (10)0.0045 (10)0.0088 (10)
C360.0202 (10)0.0214 (11)0.0203 (11)0.0027 (9)0.0017 (9)0.0006 (9)
N10.0164 (9)0.0255 (10)0.0283 (10)0.0027 (8)0.0072 (8)0.0017 (8)
P10.0129 (2)0.0145 (3)0.0132 (2)0.0000 (2)0.00030 (19)0.0003 (2)
Br10.01722 (10)0.02281 (11)0.01939 (11)0.00049 (8)0.00321 (8)0.00172 (9)
Br20.02484 (12)0.01773 (11)0.02274 (11)0.00034 (9)0.00399 (9)0.00094 (9)
O10.0239 (9)0.0302 (9)0.0424 (10)0.0056 (7)0.0007 (7)0.0017 (8)
C980.0217 (13)0.0303 (15)0.095 (3)0.0039 (11)0.0116 (15)0.0074 (15)
C990.067 (2)0.0290 (15)0.066 (2)0.0049 (14)0.0318 (17)0.0120 (14)
Geometric parameters (Å, º) top
C1—C21.535 (3)C22—H220.93
C1—P11.8020 (19)C23—C241.380 (3)
C1—H1A0.97C23—H230.93
C1—H1B0.97C24—C251.382 (3)
C2—C31.519 (3)C24—H240.93
C2—H2A0.97C25—C261.394 (3)
C2—H2B0.97C25—H250.93
C3—C41.520 (3)C26—H260.93
C3—H3A0.97C31—C361.395 (3)
C3—H3B0.97C31—C321.400 (3)
C4—C51.512 (3)C31—P11.791 (2)
C4—H4A0.97C32—C331.380 (3)
C4—H4B0.97C32—H320.93
C5—N11.496 (3)C33—C341.387 (3)
C5—H5A0.97C33—H330.93
C5—H5B0.97C34—C351.377 (3)
C11—C121.389 (3)C34—H340.93
C11—C161.403 (3)C35—C361.386 (3)
C11—P11.797 (2)C35—H350.93
C12—C131.388 (3)C36—H360.93
C12—H120.93N1—H1C0.89
C13—C141.385 (3)N1—H1D0.89
C13—H130.93N1—H1E0.89
C14—C151.379 (3)O1—C981.425 (3)
C14—H140.93O1—H10.82
C15—C161.383 (3)C98—C991.509 (4)
C15—H150.93C98—H98A0.97
C16—H160.93C98—H98B0.97
C21—C261.391 (3)C99—H99A0.96
C21—C221.400 (3)C99—H99B0.96
C21—P11.801 (2)C99—H99C0.96
C22—C231.386 (3)
C2—C1—P1111.77 (13)C24—C23—H23119.9
C2—C1—H1A109.3C22—C23—H23119.9
P1—C1—H1A109.3C23—C24—C25120.6 (2)
C2—C1—H1B109.3C23—C24—H24119.7
P1—C1—H1B109.3C25—C24—H24119.7
H1A—C1—H1B107.9C24—C25—C26119.7 (2)
C3—C2—C1112.95 (16)C24—C25—H25120.1
C3—C2—H2A109C26—C25—H25120.1
C1—C2—H2A109C21—C26—C25120.0 (2)
C3—C2—H2B109C21—C26—H26120
C1—C2—H2B109C25—C26—H26120
H2A—C2—H2B107.8C36—C31—C32119.53 (19)
C2—C3—C4110.66 (16)C36—C31—P1122.08 (16)
C2—C3—H3A109.5C32—C31—P1118.36 (15)
C4—C3—H3A109.5C33—C32—C31120.1 (2)
C2—C3—H3B109.5C33—C32—H32119.9
C4—C3—H3B109.5C31—C32—H32119.9
H3A—C3—H3B108.1C32—C33—C34120.1 (2)
C5—C4—C3112.86 (17)C32—C33—H33120
C5—C4—H4A109C34—C33—H33120
C3—C4—H4A109C35—C34—C33120.0 (2)
C5—C4—H4B109C35—C34—H34120
C3—C4—H4B109C33—C34—H34120
H4A—C4—H4B107.8C34—C35—C36120.9 (2)
N1—C5—C4110.02 (17)C34—C35—H35119.6
N1—C5—H5A109.7C36—C35—H35119.6
C4—C5—H5A109.7C35—C36—C31119.4 (2)
N1—C5—H5B109.7C35—C36—H36120.3
C4—C5—H5B109.7C31—C36—H36120.3
H5A—C5—H5B108.2C5—N1—H1C109.5
C12—C11—C16120.08 (18)C5—N1—H1D109.5
C12—C11—P1121.51 (15)H1C—N1—H1D109.5
C16—C11—P1118.33 (15)C5—N1—H1E109.5
C13—C12—C11119.58 (19)H1C—N1—H1E109.5
C13—C12—H12120.2H1D—N1—H1E109.5
C11—C12—H12120.2C31—P1—C11111.43 (9)
C14—C13—C12120.0 (2)C31—P1—C21109.24 (9)
C14—C13—H13120C11—P1—C21106.92 (9)
C12—C13—H13120C31—P1—C1107.71 (9)
C15—C14—C13120.6 (2)C11—P1—C1110.84 (9)
C15—C14—H14119.7C21—P1—C1110.71 (9)
C13—C14—H14119.7C98—O1—H1109.5
C14—C15—C16120.0 (2)O1—C98—C99113.2 (2)
C14—C15—H15120O1—C98—H98A108.9
C16—C15—H15120C99—C98—H98A108.9
C15—C16—C11119.65 (19)O1—C98—H98B108.9
C15—C16—H16120.2C99—C98—H98B108.9
C11—C16—H16120.2H98A—C98—H98B107.8
C26—C21—C22119.74 (19)C98—C99—H99A109.5
C26—C21—P1122.32 (16)C98—C99—H99B109.5
C22—C21—P1117.84 (15)H99A—C99—H99B109.5
C23—C22—C21119.7 (2)C98—C99—H99C109.5
C23—C22—H22120.2H99A—C99—H99C109.5
C21—C22—H22120.2H99B—C99—H99C109.5
C24—C23—C22120.2 (2)
P1—C1—C2—C3178.55 (15)C34—C35—C36—C310.3 (3)
C1—C2—C3—C4172.83 (17)C32—C31—C36—C350.4 (3)
C2—C3—C4—C5173.97 (18)P1—C31—C36—C35178.57 (16)
C3—C4—C5—N1172.94 (17)C36—C31—P1—C113.0 (2)
C16—C11—C12—C130.0 (3)C32—C31—P1—C11175.18 (16)
P1—C11—C12—C13176.62 (16)C36—C31—P1—C21114.94 (17)
C11—C12—C13—C140.5 (3)C32—C31—P1—C2166.91 (18)
C12—C13—C14—C150.6 (3)C36—C31—P1—C1124.75 (17)
C13—C14—C15—C160.3 (3)C32—C31—P1—C153.40 (18)
C14—C15—C16—C110.2 (3)C12—C11—P1—C31119.73 (17)
C12—C11—C16—C150.3 (3)C16—C11—P1—C3163.56 (18)
P1—C11—C16—C15177.07 (15)C12—C11—P1—C21120.97 (17)
C26—C21—C22—C230.9 (3)C16—C11—P1—C2155.74 (18)
P1—C21—C22—C23175.53 (16)C12—C11—P1—C10.22 (19)
C21—C22—C23—C240.7 (3)C16—C11—P1—C1176.49 (15)
C22—C23—C24—C250.5 (3)C26—C21—P1—C310.2 (2)
C23—C24—C25—C261.5 (3)C22—C21—P1—C31176.17 (15)
C22—C21—C26—C250.1 (3)C26—C21—P1—C11120.89 (17)
P1—C21—C26—C25176.38 (16)C22—C21—P1—C1155.46 (18)
C24—C25—C26—C211.3 (3)C26—C21—P1—C1118.28 (17)
C36—C31—C32—C330.8 (3)C22—C21—P1—C165.38 (18)
P1—C31—C32—C33179.03 (16)C2—C1—P1—C3144.82 (17)
C31—C32—C33—C341.1 (3)C2—C1—P1—C1177.32 (16)
C32—C33—C34—C351.0 (3)C2—C1—P1—C21164.20 (14)
C33—C34—C35—C360.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.92.790 (3)177
N1—H1D···Br1ii0.892.343.2226 (18)170
O1—H1···Br20.822.433.2397 (16)170
N1—H1E···Br20.892.43.2814 (18)168
C13—H13···O1iii0.932.663.584 (3)172
C34—H34···Br2iv0.9333.729 (2)137
C1—H1A···Br1v0.972.923.836 (2)159
C99—H99B···Br1v0.962.923.849 (3)163
C1—H1B···Br10.972.923.886 (2)173
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z+1; (v) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H28NP2+·2Br·C2H6O
Mr555.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)89
a, b, c (Å)16.600 (3), 11.947 (2), 26.257 (5)
V3)5207.3 (18)
Z8
Radiation typeMo Kα
µ (mm1)3.19
Crystal size (mm)0.27 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.379, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
98142, 5323, 4470
Rint0.063
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.04
No. of reflections5323
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006)., WinGX (Farrugia, 1999), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.92.790 (3)176.8
N1—H1D···Br1ii0.892.343.2226 (18)170.3
O1—H1···Br20.822.433.2397 (16)170.3
N1—H1E···Br20.892.43.2814 (18)168.3
C13—H13···O1iii0.932.663.584 (3)172.2
C34—H34···Br2iv0.9333.729 (2)136.5
C1—H1A···Br1v0.972.923.836 (2)158.9
C99—H99B···Br1v0.962.923.849 (3)162.6
C1—H1B···Br10.972.923.886 (2)172.5
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z+1; (v) x, y1/2, z+1/2.
 

Acknowledgements

The author thanks Professor Rob Smith for access to materials and laboratory facilities, and the BBSRC for funding (Contract No. BB/D020786/1).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCzerwinski, E. W. (1986). Acta Cryst. C42, 236–239.  CSD CrossRef CAS Web of Science IUCr Journals
First citationDubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112–114.  CSD CrossRef CAS Web of Science IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationIssleib, K. & Rieschel, R. (1965). Chem. Ber. 98, 2086–2090.  CrossRef CAS Web of Science
First citationKeough, P. & Grayson, M. (1964). J. Org. Chem. 29, 631–635.  CrossRef Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationMcAllister, P. R., Dotson, M. J., Grim, S. O. & Hillman, G. R. (1980). J. Med. Chem. 23, 862–865.  CrossRef CAS PubMed Web of Science
First citationMurphy, M. P. & Smith, R. A. (2007). Annu. Rev. Pharmacol. Toxicol. 47, 629–656.  Web of Science CrossRef PubMed CAS
First citationPorteous, C. M., Evans, C., Ledgerwood, E., Menon, D. K., Aigbirhio, F., Smith, R. A. J. & Murphy, M. P. (2010). Biochem. Pharmacol. Submitted.
First citationPrime, T. A., Blaikie, F. H., Evans, C., Nadtochiy, S. M., James, A. M., Dahm, C. C., Vitturi, D. A., Patel, R. P., Hiley, C. R., Abakumova, I., Requejo, R., Chouchani, E. T., Hurd, T. R., Garvey, J. F., Taylor, C. T., Brookes, P. S., Smith, R. A. J. & Murphy, M. P. (2009). Proc. Natl Acad. Sci. 106, 10764–10769.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). publCIF. In preparation.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o502-o503
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds