organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazolium chloride monohydrate

aYuncheng University, College of Chemistry, Yuncheng 044000, People's Republic of China
*Correspondence e-mail: xiadaocheng1976@yahoo.com.cn

(Received 6 February 2010; accepted 16 February 2010; online 20 February 2010)

In the title hydrated molecular salt, C9H9N2+·Cl·H2O, the dihedral angle between the five- and six-membered rings in the cation is 18.00 (2)°. O—H⋯Cl, N—H⋯O and N—H⋯Cl hrdrogen-bonding inter­actions are present in the crystal structure.

Related literature

For related 2-phenyl­imidazolium nitrate structures, see: Zhang et al. (2007[Zhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438-o2439.]); Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]). For a phosphate salt of phenyl­imadazole, see: Xia & Yao (2010[Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o609.]) and for a silver complex, see: Han et al. (2010[Han, S., Li, W.-C. & Xia, D.-C. (2010). Acta Cryst. E66, m3.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·Cl·H2O

  • Mr = 198.65

  • Triclinic, [P \overline 1]

  • a = 7.2751 (10) Å

  • b = 8.8816 (13) Å

  • c = 9.3228 (10) Å

  • α = 105.486 (11)°

  • β = 106.516 (11)°

  • γ = 109.337 (13)°

  • V = 499.65 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.31 × 0.24 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.52, Tmax = 0.78

  • 3460 measured reflections

  • 2030 independent reflections

  • 1198 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.074

  • S = 0.81

  • 2030 reflections

  • 126 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 1.96 2.774 (2) 157
N2—H2⋯Cl1i 0.86 2.28 3.1371 (14) 172
O1W—HW11⋯Cl1 0.86 (3) 2.33 (3) 3.177 (2) 174 (2)
O1W—HW12⋯Cl1ii 0.88 (3) 2.32 (3) 3.190 (2) 176 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2-phenylimidazolium nitrate structure has been reported as a hemihydrate (Zhang et al., 2007) and as a hydrate (Xia et al., 2009). Here we report the synthesis and structure of the chloride hydrate, namely, C9H11ClN2O.

The asymmetric unit of the title compound contains one 2-phenylimidazolium cation, one chloride anion and one water molecule (Fig. 1). There are O—H···Cl, N—H···O and N—H···Cl H-bonding interactions in the structure (Table I).

Related literature top

For related 2-phenylimidazolium nitrate structures, see: Zhang et al. (2007); Xia et al. (2009). For a phosphate salt of phenylimadazole, see: Xia & Yao (2010) and for a silver complex, see: Han et al. (2010).

Experimental top

A mixture of 2-phenylimidazole (0.5 mmol), hydrochloric acid (0.5 mmol) and H2O (30 mmol) was mixed. After two weeks, colorless crystals were obtained at room temperature (22% yield).

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H-atom was located in a difference Fourier map, and was refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atomic numbering scheme and displacement ellipsoids at the 30% probability level.
2-Phenylimidazolium chloride monohydrate top
Crystal data top
C9H9N2+·Cl·H2OZ = 2
Mr = 198.65F(000) = 208
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2751 (10) ÅCell parameters from 2030 reflections
b = 8.8816 (13) Åθ = 2.5–26.4°
c = 9.3228 (10) ŵ = 0.34 mm1
α = 105.486 (11)°T = 293 K
β = 106.516 (11)°Block, colorless
γ = 109.337 (13)°0.31 × 0.24 × 0.22 mm
V = 499.65 (15) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2030 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.5°
ω scanh = 69
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1011
Tmin = 0.52, Tmax = 0.78l = 119
3460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.81 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
2030 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H9N2+·Cl·H2Oγ = 109.337 (13)°
Mr = 198.65V = 499.65 (15) Å3
Triclinic, P1Z = 2
a = 7.2751 (10) ÅMo Kα radiation
b = 8.8816 (13) ŵ = 0.34 mm1
c = 9.3228 (10) ÅT = 293 K
α = 105.486 (11)°0.31 × 0.24 × 0.22 mm
β = 106.516 (11)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2030 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1198 reflections with I > 2σ(I)
Tmin = 0.52, Tmax = 0.78Rint = 0.025
3460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.16 e Å3
2030 reflectionsΔρmin = 0.25 e Å3
126 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4640 (3)0.2399 (2)0.3466 (2)0.0617 (5)
H1A0.51400.25300.45490.074*
C20.4744 (3)0.3668 (2)0.2929 (2)0.0653 (6)
H2A0.53220.48490.35700.078*
C30.3188 (3)0.1197 (2)0.0774 (2)0.0437 (4)
C40.2201 (3)0.0061 (2)0.0909 (2)0.0441 (4)
C50.1124 (3)0.1827 (2)0.1299 (2)0.0548 (5)
H50.10070.22150.04820.066*
C60.0231 (3)0.3006 (2)0.2889 (2)0.0665 (6)
H60.05090.41860.31460.080*
C70.0428 (3)0.2445 (3)0.4101 (3)0.0693 (6)
H70.01670.32470.51740.083*
C80.1500 (3)0.0708 (3)0.3728 (2)0.0661 (6)
H80.16340.03360.45510.079*
C90.2382 (3)0.0496 (2)0.2145 (2)0.0550 (5)
H90.30950.16760.19030.066*
N10.3844 (2)0.29054 (16)0.12684 (18)0.0543 (4)
H10.37190.34480.06350.065*
N20.3658 (2)0.08756 (17)0.21156 (17)0.0504 (4)
H20.33850.01380.21290.060*
O1W0.2454 (3)0.4594 (2)0.0598 (3)0.0680 (4)
HW110.249 (4)0.538 (3)0.019 (3)0.114 (11)*
HW120.107 (5)0.407 (3)0.117 (3)0.122 (11)*
Cl10.26211 (8)0.73220 (5)0.25005 (5)0.0634 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0669 (14)0.0637 (12)0.0518 (12)0.0312 (10)0.0177 (10)0.0234 (10)
C20.0746 (14)0.0527 (11)0.0572 (14)0.0266 (10)0.0189 (11)0.0164 (9)
C30.0437 (10)0.0496 (10)0.0537 (11)0.0267 (8)0.0245 (8)0.0305 (8)
C40.0444 (10)0.0503 (10)0.0551 (11)0.0291 (8)0.0245 (9)0.0311 (8)
C50.0648 (13)0.0558 (11)0.0580 (12)0.0308 (10)0.0284 (10)0.0340 (9)
C60.0788 (15)0.0552 (11)0.0645 (14)0.0289 (10)0.0271 (11)0.0255 (10)
C70.0787 (15)0.0748 (14)0.0579 (13)0.0407 (12)0.0277 (11)0.0229 (10)
C80.0818 (15)0.0869 (14)0.0602 (14)0.0500 (12)0.0389 (11)0.0459 (11)
C90.0628 (12)0.0587 (11)0.0663 (13)0.0335 (10)0.0350 (10)0.0397 (10)
N10.0650 (10)0.0474 (9)0.0635 (11)0.0286 (7)0.0295 (8)0.0324 (7)
N20.0566 (10)0.0501 (8)0.0560 (10)0.0293 (7)0.0218 (8)0.0316 (7)
O1W0.0656 (12)0.0655 (9)0.0919 (12)0.0366 (8)0.0345 (9)0.0460 (9)
Cl10.0715 (3)0.0529 (3)0.0548 (3)0.0174 (2)0.0143 (2)0.0311 (2)
Geometric parameters (Å, º) top
C1—C21.339 (2)C6—C71.375 (3)
C1—N21.366 (2)C6—H60.9300
C1—H1A0.9300C7—C81.368 (3)
C2—N11.362 (2)C7—H70.9300
C2—H2A0.9300C8—C91.378 (3)
C3—N11.3282 (19)C8—H80.9300
C3—N21.332 (2)C9—H90.9300
C3—C41.455 (2)N1—H10.8600
C4—C51.388 (2)N2—H20.8600
C4—C91.392 (2)O1W—HW110.86 (3)
C5—C61.374 (3)O1W—HW120.88 (3)
C5—H50.9300
C2—C1—N2106.67 (17)C7—C6—H6119.9
C2—C1—H1A126.7C8—C7—C6120.01 (19)
N2—C1—H1A126.7C8—C7—H7120.0
C1—C2—N1107.20 (16)C6—C7—H7120.0
C1—C2—H2A126.4C7—C8—C9120.68 (17)
N1—C2—H2A126.4C7—C8—H8119.7
N1—C3—N2106.63 (14)C9—C8—H8119.7
N1—C3—C4126.29 (15)C8—C9—C4119.67 (16)
N2—C3—C4127.06 (15)C8—C9—H9120.2
C5—C4—C9119.14 (16)C4—C9—H9120.2
C5—C4—C3120.82 (15)C3—N1—C2109.75 (14)
C9—C4—C3120.01 (15)C3—N1—H1125.1
C6—C5—C4120.30 (16)C2—N1—H1125.1
C6—C5—H5119.8C3—N2—C1109.74 (14)
C4—C5—H5119.8C3—N2—H2125.1
C5—C6—C7120.18 (18)C1—N2—H2125.1
C5—C6—H6119.9HW11—O1W—HW1297 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.962.774 (2)157
N2—H2···Cl1i0.862.283.1371 (14)172
O1W—HW11···Cl10.86 (3)2.33 (3)3.177 (2)174 (2)
O1W—HW12···Cl1ii0.88 (3)2.32 (3)3.190 (2)176 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9N2+·Cl·H2O
Mr198.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2751 (10), 8.8816 (13), 9.3228 (10)
α, β, γ (°)105.486 (11), 106.516 (11), 109.337 (13)
V3)499.65 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.31 × 0.24 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.52, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
3460, 2030, 1198
Rint0.025
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 0.81
No. of reflections2030
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.962.774 (2)157.1
N2—H2···Cl1i0.862.283.1371 (14)172.0
O1W—HW11···Cl10.86 (3)2.33 (3)3.177 (2)174 (2)
O1W—HW12···Cl1ii0.88 (3)2.32 (3)3.190 (2)176 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank Yuncheng University for support.

References

First citationHan, S., Li, W.-C. & Xia, D.-C. (2010). Acta Cryst. E66, m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438–o2439.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds