organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o660-o661

2,25-Dioxo-27,28-di­phenyl-30-oxa-29-thia-3,10,17,24-tetra­aza­penta­cyclo­[24.2.1.112,15.04,9.018,23]triaconta-5,7,9(4),10,12,14,16,18,20,22,26,28-dodeca­ene chloro­form disolvate

aBaku State University, Z. Khalilov St 23, Baku, AZ-1148, Azerbaijan, bChemistry Department, M.V. Lomonosov Moscow State University, Leninskie gory 1/3, Moscow, 119991, Russian Federation, and cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St 28, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 11 February 2010; accepted 16 February 2010; online 20 February 2010)

The macrocycle of the title compound, C36H24N4O3S·2CHCl3, contains a rigid framework with the nitro­gen and oxygen heteroatoms pointing in towards the center of the macrocyclic cavity. The macrocycle is essentially planar (r.m.s. deviation = 0.027 Å) except for the thio­phene ring. The dihedral angle between the thio­phene ring plane and the mean plane of the central macrocyclic core including all atoms except sulfur is 21.6 (1)°. Four intra­molecular hydrogen bonds occur: two are between the amide hydrogen atoms and the Schiff base nitro­gen atoms, while the others are between the amide hydrogen atoms and the sulfur atom of the thio­phene. The two solvate chloro­form mol­ecules are bound to the carbonyl oxygen atoms of the ligand by weak C—H⋯O hydrogen bonding. In addition, the structure reveals inter­molecular Cl⋯Cl close contacts [3.308 (2), 3.404 (2) and 3.280 (2) Å] between the chloro­form solvate mol­ecules. In the crystal, the macrocycles form layers parallel to (101), with an inter­layer distance of 3.362 (3) Å. This short distance is determined by the stacking inter­actions between the amide carbonyl and imine fragments of neighboring ligands.

Related literature

For general background to biological anion–receptor inter­actions, see: Caltagirone & Gale (2009[Caltagirone, C. & Gale, P. A. (2009). Chem. Soc. Rev. 38, 520-563.]). For the synthesis of synthetic anion receptors, see: Aydogan et al. (2008[Aydogan, A., Coady, D. J., Kim, S. K., Akar, A., Bielawski, C. W., Marquez, M. & Sessler, J. L. (2008). Angew. Chem. Int. Ed. 47, 9648-9652.]). For related compounds, see: Sessler et al. (2005a[Sessler, J. L., Katayev, E., Pantos, G. D., Scherbakov, P., Reshetova, M. D., Khrustalev, V. N., Lynch, V. M. & Ustynyuk, Yu. A. (2005a). J. Am. Chem. Soc. 127, 11442-11446.],b[Sessler, J. L., Roznyatovskiy, V., Pantos, G. D., Borisova, N. E., Reshetova, M. D., Lynch, V. M., Khrustalev, V. N. & Ustynyuk, Yu. A. (2005b). Org. Lett. 7, 5277-5280.]).

[Scheme 1]

Experimental

Crystal data
  • C36H24N4O3S·2CHCl3

  • Mr = 831.40

  • Monoclinic, P 21 /c

  • a = 13.0957 (15) Å

  • b = 31.854 (3) Å

  • c = 8.7368 (9) Å

  • β = 98.857 (3)°

  • V = 3601.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 120 K

  • 0.30 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.845, Tmax = 0.888

  • 29858 measured reflections

  • 7802 independent reflections

  • 4582 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.108

  • S = 1.01

  • 7802 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.90 2.13 2.622 (3) 114
N1—H1N⋯S1 0.90 2.48 2.970 (3) 115
N4—H4N⋯N3 0.90 2.13 2.620 (3) 114
N4—H4N⋯S1 0.90 2.53 2.986 (3) 112
C32—H32⋯Cl6i 0.95 2.69 3.461 (3) 139
C37—H37⋯O1 1.00 2.34 3.149 (3) 137
C38—H38⋯O3 1.00 2.46 3.205 (3) 131
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The ubiquity of anions in nature makes an understanding of biological anion–receptor interactions a topic of considerable current interest (Caltagirone & Gale, 2009). It is also inspiring the synthesis of synthetic anion receptors, systems whose potential utility could span the full spectrum of applications from separations and waste remediation to biomedical analysis and therapy (Aydogan et al., 2008). We are particularly interested in the design of rigid macrocyclic hosts for anions and use for this purpose aromatics linked by amide or imine bonds. These bonds and pyrrole rings serve as efficient coordination site for anions functioning by means of hydrogen bonds. In our previous works, it has been shown that rigid scaffold of a receptor results in a higher selectivity that the one with flexible skeleton (Sessler et al., 2005a,b). In this work, we present the new receptor bearing furan and thiophen-2,5-dicarboxamide units in one macrocycle.

The target receptor was synthesized according to the method of template synthesis using chloride anion as a template. The dialdehyde (2,5–diformylfuran) and diamine (N,N'-bis(2-aminophenyl)-3,4-diphenylthiophen-2,5-dicarboxamide) were condensed in the presence of hydrochloric acid affording hydrochloric acid salt of the macrocyclic receptor I. The HCl that was subsequently neutralized by triethylamine to give free base ligand I (Fig. 1). The single crystals of I suitable for X–ray diffraction analysis were obtained by slow crystallization from chloroform–methanol mixture.

The title compound I crystallizes as a solvate with two chloroform molecules, i. e., C36H24N4O3S.2CHCl3. The macrocycle I contains a rigid framework with the N1, N2, O2, N3 and N4 heteroatoms pointing in toward the center of the macrocyclic cavity (Fig. 2). It is practically planar excepting for the thiophene ring. By the intermolecular C—H···O hydrogen bond (Table 1), the phenyl group at the C3 carbon atom of the thiophene forces this ring to deviate from the plane of the central macrocyclic core passed through the C1/C4/C5/N1/C6/C7/N2/C12/C13/O2/C16/C17/N3/C18/C19/N4/C24 atoms (the dihedral angle is 21.6 (1)°. There are four internal hydrogen bonds in I. Two are between the amide NH protons and the Schiff base nitrogen atoms, while the other are between the amide NH protons and the sulfur atom of the thiophene (Table 1). The two solvate chloroform molecules are bound to the carbonyl oxygen atoms of the ligand by weak C—H···O hydrogen bonding (Table 1). In addition to these effects, the structure reveals the intermolecular Cl···Cl attractive interactions between the chloroform solvate molecules (Cl1···Cl3ii, Cl1···Cl4iii and Cl2···Cl5iv distances are 3.308 (2)Å, 3.404 (2)Å and 3.280 (2)Å, respectively). In the crystal, the macrocycles I form the layers parallel to (101), with the interlayer distance of 3.362 (3)Å (Fig. 3). This short distance is determined by the stacking interactions between amide carbonyl and imine fragments of neighboring ligands. Symmetry codes: (ii) x, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) x-1, y, z+1.

Related literature top

For general background to biological anion–receptor interactions, see: Caltagirone & Gale (2009). For the synthesis of synthetic anion receptors, see: Aydogan et al. (2008). For related compounds, see: Sessler et al. (2005a,b).

Experimental top

Concentrated hydrochloric acid (21.5 µl, 0.18 mmol) was added to a mixture of 2,5-diformylfuran (13 mg, 0.1 mmol) and N,N'-bis(2-aminophenyl)-3,4-diphenylthiophen-2,5-dicarboxamide (51 mg, 0.1 mmol) in 20 ml dry MeOH. The colourless clear solution was stirred for overnight at 296 K. The precipitate formed was filtrated off and suspended in 1.5 ml dry dichloromethane. Then triethylamine (25.3 µl, 0.18 mmol) was added to the suspension affording yellow clear solution, which was passed through a plug of silica gel. Evaporation of the solvent yielded 44 mg (73%) of product I. M.p. > 623 K (decomp.). Found (%): C, 72.87; H, 4.08; N, 9.43. Calcd. for C36H24N4O3S (%): C, 72.96; H, 4.08; N, 9.45. 1H NMR (CDCl3, 293 K): \d = 7.05–7.24 (m, 16H), 7.36 (d, 2H), 8.50 (d, 2H), 8.52 (s, 2H), 10.38 (s, 2H). 13C NMR (CDCl3, 293 K): \d = 114.67, 119.41, 120.56, 123.68, 127.37, 127.54, 129.43, 130.12, 132.25, 134.41, 135.43, 135.82, 142.66, 148.52, 154.21, 157.99. Mass spectrum (MALDI–TOF), m/z (Ir, %): 593.10 [M+H]+.

Refinement top

The hydrogen atoms were placed in calculated positions with N—H = 0.88Å and C—H = 0.95–1.00Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for CH3-groups and Uiso(H) = 1.2Ueq(N or C) for the other groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of the macrocyclic ligand I.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing of I. Dashed lines indicate the hydrogen bonding and Cl···Cl interactions.
2,25-Dioxo-27,28-diphenyl-30-oxa-29-thia-3,10,17,24- tetraazapentacyclo[24.2.1.112,15.04,9.018,23]triaconta- 5,7,9(4),10,12,14,16,18,20,22,26,28-dodecaene chloroform disolvate top
Crystal data top
C36H24N4O3S·2CHCl3F(000) = 1696
Mr = 831.40Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5725 reflections
a = 13.0957 (15) Åθ = 2.5–26.6°
b = 31.854 (3) ŵ = 0.58 mm1
c = 8.7368 (9) ÅT = 120 K
β = 98.857 (3)°Prism, dark–orange
V = 3601.1 (7) Å30.30 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
7802 independent reflections
Radiation source: fine–focus sealed tube4582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ– and ω–scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1616
Tmin = 0.845, Tmax = 0.888k = 4040
29858 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
7802 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C36H24N4O3S·2CHCl3V = 3601.1 (7) Å3
Mr = 831.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0957 (15) ŵ = 0.58 mm1
b = 31.854 (3) ÅT = 120 K
c = 8.7368 (9) Å0.30 × 0.24 × 0.21 mm
β = 98.857 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
7802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4582 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.888Rint = 0.061
29858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
7802 reflectionsΔρmin = 0.29 e Å3
469 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.57191 (5)0.45496 (2)0.59993 (9)0.02602 (18)
O10.38015 (15)0.39570 (6)0.8264 (2)0.0325 (5)
O20.58881 (14)0.58584 (5)0.6945 (2)0.0255 (4)
O30.80044 (15)0.41512 (6)0.4006 (2)0.0338 (5)
N10.42143 (17)0.46535 (7)0.8191 (3)0.0241 (5)
H1N0.46410.48400.78460.029*
N20.43040 (17)0.54752 (7)0.8331 (3)0.0255 (5)
N30.74814 (18)0.56185 (7)0.5267 (3)0.0265 (6)
N40.76316 (17)0.48108 (7)0.4781 (3)0.0258 (6)
H4N0.72540.49590.53700.031*
C10.6697 (2)0.42298 (8)0.5574 (3)0.0248 (7)
C20.6625 (2)0.38325 (8)0.6169 (3)0.0238 (6)
C30.5764 (2)0.37870 (8)0.6978 (3)0.0229 (6)
C40.5207 (2)0.41545 (8)0.6990 (3)0.0228 (6)
C50.4332 (2)0.42398 (8)0.7865 (3)0.0253 (7)
C60.3511 (2)0.48458 (9)0.9041 (3)0.0260 (7)
C70.3535 (2)0.52889 (8)0.9089 (3)0.0245 (6)
C80.2852 (2)0.54974 (9)0.9897 (3)0.0286 (7)
H80.28480.57960.99180.034*
C90.2181 (2)0.52777 (9)1.0667 (3)0.0326 (7)
H9A0.17180.54241.12140.039*
C100.2181 (2)0.48450 (9)1.0643 (4)0.0341 (8)
H100.17320.46951.12030.041*
C110.2827 (2)0.46250 (9)0.9815 (3)0.0284 (7)
H110.28030.43270.97750.034*
C120.4479 (2)0.58709 (9)0.8440 (3)0.0279 (7)
H120.40600.60350.90060.033*
C130.5266 (2)0.60808 (8)0.7761 (3)0.0268 (7)
C140.5540 (2)0.64955 (9)0.7810 (3)0.0314 (7)
H140.52270.67150.83080.038*
C150.6373 (2)0.65331 (9)0.6985 (3)0.0300 (7)
H150.67300.67840.68100.036*
C160.6570 (2)0.61423 (8)0.6485 (3)0.0255 (7)
C170.7350 (2)0.60029 (9)0.5601 (3)0.0271 (7)
H170.77880.62070.52500.033*
C180.8263 (2)0.54995 (9)0.4407 (3)0.0253 (7)
C190.8333 (2)0.50648 (9)0.4126 (3)0.0269 (7)
C200.9060 (2)0.49109 (9)0.3278 (3)0.0293 (7)
H200.91000.46180.30910.035*
C210.9727 (2)0.51832 (9)0.2706 (4)0.0348 (8)
H211.02250.50770.21220.042*
C220.9675 (2)0.56104 (9)0.2977 (4)0.0339 (8)
H221.01410.57950.25830.041*
C230.8952 (2)0.57689 (9)0.3816 (4)0.0320 (7)
H230.89210.60630.39930.038*
C240.7509 (2)0.43888 (9)0.4706 (3)0.0260 (7)
C250.7390 (2)0.34909 (8)0.6047 (3)0.0258 (7)
C260.7238 (2)0.31965 (9)0.4887 (4)0.0356 (8)
H260.66370.32100.41250.043*
C270.7960 (3)0.28761 (9)0.4816 (4)0.0438 (9)
H270.78510.26740.40070.053*
C280.8824 (3)0.28547 (10)0.5916 (4)0.0451 (9)
H280.93130.26360.58800.054*
C290.8980 (3)0.31500 (11)0.7067 (4)0.0463 (9)
H290.95830.31360.78250.056*
C300.8277 (2)0.34644 (9)0.7135 (4)0.0353 (8)
H300.83970.36670.79400.042*
C310.5545 (2)0.33855 (8)0.7748 (3)0.0232 (6)
C320.6213 (2)0.32491 (8)0.9032 (3)0.0274 (7)
H320.67910.34170.94420.033*
C330.6045 (2)0.28673 (9)0.9726 (4)0.0330 (7)
H330.64960.27801.06280.040*
C340.5235 (2)0.26168 (9)0.9119 (4)0.0330 (8)
H340.51310.23540.95840.040*
C350.4571 (2)0.27476 (9)0.7830 (4)0.0311 (7)
H350.40100.25730.74040.037*
C360.4715 (2)0.31338 (8)0.7147 (3)0.0250 (6)
H360.42460.32250.62710.030*
Cl10.18557 (6)0.31001 (2)0.69064 (9)0.0365 (2)
Cl20.15795 (6)0.35523 (2)0.96738 (9)0.0391 (2)
Cl30.24483 (7)0.27221 (2)0.99017 (10)0.0428 (2)
C370.2369 (2)0.31996 (9)0.8865 (3)0.0328 (7)
H370.30770.33220.89230.039*
Cl41.05290 (6)0.31392 (3)0.32391 (10)0.0456 (2)
Cl51.01463 (7)0.39768 (3)0.20247 (12)0.0556 (3)
Cl60.86232 (7)0.33276 (3)0.12830 (11)0.0590 (3)
C380.9583 (2)0.35249 (10)0.2702 (4)0.0385 (8)
H380.92630.36020.36320.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (4)0.0193 (3)0.0321 (4)0.0014 (3)0.0086 (3)0.0029 (3)
O10.0336 (12)0.0225 (10)0.0444 (14)0.0006 (9)0.0154 (10)0.0023 (10)
O20.0273 (11)0.0208 (10)0.0294 (11)0.0001 (8)0.0077 (9)0.0004 (9)
O30.0362 (12)0.0253 (11)0.0439 (13)0.0022 (9)0.0185 (11)0.0012 (10)
N10.0263 (13)0.0197 (12)0.0277 (14)0.0027 (10)0.0080 (11)0.0030 (10)
N20.0251 (13)0.0217 (12)0.0302 (14)0.0007 (10)0.0061 (11)0.0017 (11)
N30.0296 (13)0.0216 (12)0.0289 (14)0.0014 (10)0.0063 (11)0.0000 (11)
N40.0273 (13)0.0202 (12)0.0323 (14)0.0012 (10)0.0119 (11)0.0009 (11)
C10.0267 (16)0.0230 (15)0.0258 (17)0.0009 (12)0.0072 (13)0.0029 (13)
C20.0248 (15)0.0216 (14)0.0244 (16)0.0005 (12)0.0018 (13)0.0023 (12)
C30.0285 (15)0.0196 (14)0.0206 (16)0.0015 (12)0.0035 (13)0.0002 (12)
C40.0254 (15)0.0198 (14)0.0232 (16)0.0017 (12)0.0032 (13)0.0005 (12)
C50.0242 (15)0.0218 (15)0.0299 (17)0.0012 (13)0.0047 (13)0.0042 (13)
C60.0230 (15)0.0290 (16)0.0264 (17)0.0030 (13)0.0050 (13)0.0007 (13)
C70.0236 (15)0.0247 (15)0.0246 (16)0.0029 (12)0.0019 (13)0.0002 (13)
C80.0282 (16)0.0231 (15)0.0351 (18)0.0020 (13)0.0070 (14)0.0052 (14)
C90.0304 (17)0.0334 (17)0.0363 (19)0.0006 (14)0.0130 (15)0.0042 (15)
C100.0318 (17)0.0328 (17)0.040 (2)0.0058 (14)0.0138 (15)0.0029 (15)
C110.0292 (16)0.0262 (16)0.0316 (17)0.0009 (13)0.0100 (14)0.0039 (14)
C120.0304 (17)0.0242 (16)0.0306 (17)0.0021 (13)0.0096 (14)0.0007 (13)
C130.0314 (16)0.0232 (15)0.0266 (17)0.0017 (13)0.0068 (14)0.0022 (13)
C140.0396 (18)0.0210 (15)0.0353 (18)0.0008 (13)0.0107 (15)0.0047 (14)
C150.0354 (17)0.0223 (15)0.0334 (18)0.0041 (13)0.0090 (15)0.0008 (14)
C160.0292 (16)0.0215 (15)0.0253 (16)0.0055 (13)0.0031 (13)0.0016 (13)
C170.0267 (16)0.0255 (16)0.0292 (17)0.0023 (13)0.0046 (14)0.0022 (13)
C180.0241 (15)0.0258 (16)0.0259 (16)0.0011 (12)0.0030 (13)0.0016 (13)
C190.0266 (16)0.0251 (15)0.0289 (17)0.0030 (13)0.0038 (14)0.0007 (13)
C200.0292 (16)0.0251 (15)0.0351 (18)0.0008 (13)0.0095 (14)0.0008 (14)
C210.0356 (18)0.0314 (17)0.041 (2)0.0021 (14)0.0182 (16)0.0017 (15)
C220.0310 (17)0.0286 (16)0.045 (2)0.0043 (14)0.0158 (16)0.0068 (15)
C230.0343 (17)0.0231 (15)0.0396 (19)0.0022 (13)0.0088 (15)0.0018 (14)
C240.0305 (16)0.0213 (14)0.0264 (17)0.0014 (13)0.0048 (14)0.0014 (13)
C250.0253 (16)0.0192 (15)0.0355 (18)0.0024 (12)0.0132 (14)0.0044 (13)
C260.0327 (18)0.0286 (17)0.047 (2)0.0010 (14)0.0113 (16)0.0046 (15)
C270.046 (2)0.0222 (16)0.068 (3)0.0012 (15)0.025 (2)0.0064 (17)
C280.042 (2)0.0302 (18)0.069 (3)0.0100 (16)0.027 (2)0.0088 (19)
C290.0312 (18)0.049 (2)0.060 (3)0.0069 (16)0.0106 (18)0.010 (2)
C300.0305 (17)0.0358 (18)0.040 (2)0.0005 (14)0.0053 (15)0.0002 (15)
C310.0262 (15)0.0176 (14)0.0276 (17)0.0026 (12)0.0103 (13)0.0005 (13)
C320.0274 (16)0.0243 (15)0.0310 (18)0.0001 (13)0.0064 (14)0.0031 (14)
C330.0365 (18)0.0275 (16)0.0358 (19)0.0063 (14)0.0080 (15)0.0059 (14)
C340.0403 (19)0.0204 (15)0.041 (2)0.0021 (14)0.0141 (17)0.0074 (14)
C350.0352 (17)0.0224 (15)0.0375 (19)0.0069 (13)0.0111 (15)0.0031 (14)
C360.0270 (15)0.0221 (15)0.0256 (16)0.0016 (13)0.0028 (13)0.0013 (13)
Cl10.0452 (5)0.0326 (4)0.0310 (4)0.0049 (4)0.0039 (4)0.0022 (4)
Cl20.0468 (5)0.0352 (4)0.0373 (5)0.0007 (4)0.0129 (4)0.0049 (4)
Cl30.0531 (5)0.0313 (4)0.0430 (5)0.0014 (4)0.0043 (4)0.0102 (4)
C370.0353 (17)0.0287 (17)0.0343 (19)0.0015 (14)0.0049 (15)0.0005 (14)
Cl40.0384 (5)0.0557 (5)0.0414 (5)0.0030 (4)0.0017 (4)0.0052 (4)
Cl50.0587 (6)0.0352 (5)0.0798 (7)0.0018 (4)0.0321 (5)0.0095 (5)
Cl60.0527 (6)0.0570 (6)0.0582 (6)0.0022 (5)0.0200 (5)0.0019 (5)
C380.0342 (18)0.045 (2)0.037 (2)0.0028 (15)0.0050 (15)0.0029 (16)
Geometric parameters (Å, º) top
S1—C41.721 (3)C17—H170.9500
S1—C11.721 (3)C18—C231.401 (4)
O1—C51.221 (3)C18—C191.412 (4)
O2—C131.361 (3)C19—C201.384 (4)
O2—C161.374 (3)C20—C211.378 (4)
O3—C241.221 (3)C20—H200.9500
N1—C51.362 (3)C21—C221.385 (4)
N1—C61.409 (3)C21—H210.9500
N1—H1N0.8999C22—C231.379 (4)
N2—C121.282 (3)C22—H220.9500
N2—C71.418 (3)C23—H230.9500
N3—C171.276 (3)C25—C261.373 (4)
N3—C181.411 (3)C25—C301.385 (4)
N4—C241.354 (3)C26—C271.399 (4)
N4—C191.410 (3)C26—H260.9500
N4—H4N0.8999C27—C281.369 (5)
C1—C21.377 (4)C27—H270.9500
C1—C241.486 (4)C28—C291.369 (5)
C2—C31.427 (4)C28—H280.9500
C2—C251.495 (4)C29—C301.369 (4)
C3—C41.380 (4)C29—H290.9500
C3—C311.493 (4)C30—H300.9500
C4—C51.497 (4)C31—C321.383 (4)
C6—C111.393 (4)C31—C361.387 (4)
C6—C71.412 (4)C32—C331.392 (4)
C7—C81.391 (4)C32—H320.9500
C8—C91.377 (4)C33—C341.368 (4)
C8—H80.9500C33—H330.9500
C9—C101.378 (4)C34—C351.377 (4)
C9—H9A0.9500C34—H340.9500
C10—C111.385 (4)C35—C361.393 (4)
C10—H100.9500C35—H350.9500
C11—H110.9500C36—H360.9500
C12—C131.431 (4)Cl1—C371.768 (3)
C12—H120.9500Cl2—C371.748 (3)
C13—C141.368 (4)Cl3—C371.765 (3)
C14—C151.402 (4)C37—H371.0000
C14—H140.9500Cl4—C381.757 (3)
C15—C161.357 (4)Cl5—C381.761 (3)
C15—H150.9500Cl6—C381.741 (3)
C16—C171.442 (4)C38—H381.0000
C4—S1—C192.08 (13)C20—C19—C18120.6 (3)
C13—O2—C16106.2 (2)N4—C19—C18115.4 (2)
C5—N1—C6129.4 (2)C21—C20—C19119.9 (3)
C5—N1—H1N118.3C21—C20—H20120.1
C6—N1—H1N112.3C19—C20—H20120.1
C12—N2—C7120.6 (2)C20—C21—C22120.4 (3)
C17—N3—C18120.9 (2)C20—C21—H21119.8
C24—N4—C19129.0 (2)C22—C21—H21119.8
C24—N4—H4N118.4C23—C22—C21120.4 (3)
C19—N4—H4N112.4C23—C22—H22119.8
C2—C1—C24127.0 (2)C21—C22—H22119.8
C2—C1—S1111.4 (2)C22—C23—C18120.4 (3)
C24—C1—S1121.5 (2)C22—C23—H23119.8
C1—C2—C3112.7 (2)C18—C23—H23119.8
C1—C2—C25123.8 (2)O3—C24—N4124.9 (3)
C3—C2—C25123.5 (2)O3—C24—C1121.4 (2)
C4—C3—C2112.1 (2)N4—C24—C1113.7 (2)
C4—C3—C31125.8 (2)C26—C25—C30118.5 (3)
C2—C3—C31122.1 (2)C26—C25—C2121.8 (3)
C3—C4—C5127.2 (2)C30—C25—C2119.7 (3)
C3—C4—S1111.7 (2)C25—C26—C27120.6 (3)
C5—C4—S1120.81 (19)C25—C26—H26119.7
O1—C5—N1124.5 (3)C27—C26—H26119.7
O1—C5—C4121.7 (2)C28—C27—C26119.8 (3)
N1—C5—C4113.7 (2)C28—C27—H27120.1
C11—C6—N1123.9 (2)C26—C27—H27120.1
C11—C6—C7120.2 (3)C29—C28—C27119.7 (3)
N1—C6—C7115.9 (2)C29—C28—H28120.1
C8—C7—C6118.6 (3)C27—C28—H28120.1
C8—C7—N2126.6 (2)C30—C29—C28120.6 (3)
C6—C7—N2114.8 (2)C30—C29—H29119.7
C9—C8—C7120.9 (3)C28—C29—H29119.7
C9—C8—H8119.5C29—C30—C25120.9 (3)
C7—C8—H8119.5C29—C30—H30119.6
C8—C9—C10119.9 (3)C25—C30—H30119.6
C8—C9—H9A120.0C32—C31—C36119.1 (2)
C10—C9—H9A120.0C32—C31—C3119.5 (2)
C9—C10—C11121.1 (3)C36—C31—C3121.2 (3)
C9—C10—H10119.5C31—C32—C33120.3 (3)
C11—C10—H10119.5C31—C32—H32119.8
C10—C11—C6119.2 (3)C33—C32—H32119.8
C10—C11—H11120.4C34—C33—C32120.4 (3)
C6—C11—H11120.4C34—C33—H33119.8
N2—C12—C13124.1 (3)C32—C33—H33119.8
N2—C12—H12118.0C33—C34—C35119.7 (3)
C13—C12—H12118.0C33—C34—H34120.2
O2—C13—C14110.1 (2)C35—C34—H34120.2
O2—C13—C12120.1 (2)C34—C35—C36120.5 (3)
C14—C13—C12129.8 (3)C34—C35—H35119.8
C13—C14—C15106.7 (2)C36—C35—H35119.8
C13—C14—H14126.6C31—C36—C35119.9 (3)
C15—C14—H14126.6C31—C36—H36120.0
C16—C15—C14106.8 (2)C35—C36—H36120.0
C16—C15—H15126.6Cl2—C37—Cl3109.78 (16)
C14—C15—H15126.6Cl2—C37—Cl1110.25 (16)
C15—C16—O2110.1 (2)Cl3—C37—Cl1109.00 (16)
C15—C16—C17129.9 (3)Cl2—C37—H37109.3
O2—C16—C17120.0 (2)Cl3—C37—H37109.3
N3—C17—C16123.3 (3)Cl1—C37—H37109.3
N3—C17—H17118.3Cl6—C38—Cl4109.85 (17)
C16—C17—H17118.3Cl6—C38—Cl5110.45 (18)
C23—C18—N3126.4 (3)Cl4—C38—Cl5110.26 (17)
C23—C18—C19118.3 (3)Cl6—C38—H38108.7
N3—C18—C19115.3 (2)Cl4—C38—H38108.7
C20—C19—N4124.0 (3)Cl5—C38—H38108.7
C4—S1—C1—C20.3 (2)C18—N3—C17—C16179.5 (3)
C4—S1—C1—C24178.1 (2)C15—C16—C17—N3176.6 (3)
C24—C1—C2—C3178.4 (3)O2—C16—C17—N33.3 (4)
S1—C1—C2—C30.1 (3)C17—N3—C18—C230.9 (4)
C24—C1—C2—C251.0 (5)C17—N3—C18—C19179.5 (3)
S1—C1—C2—C25177.3 (2)C24—N4—C19—C201.4 (5)
C1—C2—C3—C40.6 (3)C24—N4—C19—C18179.5 (3)
C25—C2—C3—C4176.8 (3)C23—C18—C19—C200.4 (4)
C1—C2—C3—C31178.7 (3)N3—C18—C19—C20179.2 (3)
C25—C2—C3—C311.4 (4)C23—C18—C19—N4178.7 (3)
C2—C3—C4—C5172.8 (3)N3—C18—C19—N41.7 (4)
C31—C3—C4—C55.3 (5)N4—C19—C20—C21178.8 (3)
C2—C3—C4—S10.8 (3)C18—C19—C20—C210.2 (4)
C31—C3—C4—S1178.9 (2)C19—C20—C21—C220.2 (5)
C1—S1—C4—C30.7 (2)C20—C21—C22—C230.4 (5)
C1—S1—C4—C5173.4 (2)C21—C22—C23—C180.2 (5)
C6—N1—C5—O11.3 (5)N3—C18—C23—C22179.3 (3)
C6—N1—C5—C4177.0 (3)C19—C18—C23—C220.2 (4)
C3—C4—C5—O124.3 (4)C19—N4—C24—O30.9 (5)
S1—C4—C5—O1162.6 (2)C19—N4—C24—C1178.9 (3)
C3—C4—C5—N1154.1 (3)C2—C1—C24—O324.1 (5)
S1—C4—C5—N119.0 (3)S1—C1—C24—O3157.8 (2)
C5—N1—C6—C114.6 (5)C2—C1—C24—N4155.7 (3)
C5—N1—C6—C7175.9 (3)S1—C1—C24—N422.5 (3)
C11—C6—C7—C81.2 (4)C1—C2—C25—C2695.4 (4)
N1—C6—C7—C8179.3 (2)C3—C2—C25—C2687.5 (4)
C11—C6—C7—N2176.6 (2)C1—C2—C25—C3085.3 (4)
N1—C6—C7—N22.9 (4)C3—C2—C25—C3091.8 (3)
C12—N2—C7—C85.3 (4)C30—C25—C26—C270.4 (4)
C12—N2—C7—C6172.3 (3)C2—C25—C26—C27178.9 (3)
C6—C7—C8—C91.5 (4)C25—C26—C27—C280.3 (5)
N2—C7—C8—C9175.9 (3)C26—C27—C28—C290.7 (5)
C7—C8—C9—C100.0 (5)C27—C28—C29—C300.5 (5)
C8—C9—C10—C112.0 (5)C28—C29—C30—C250.1 (5)
C9—C10—C11—C62.3 (5)C26—C25—C30—C290.6 (4)
N1—C6—C11—C10178.7 (3)C2—C25—C30—C29178.8 (3)
C7—C6—C11—C100.7 (4)C4—C3—C31—C32110.0 (3)
C7—N2—C12—C13177.5 (3)C2—C3—C31—C3267.9 (4)
C16—O2—C13—C140.3 (3)C4—C3—C31—C3673.7 (4)
C16—O2—C13—C12178.4 (3)C2—C3—C31—C36108.4 (3)
N2—C12—C13—O20.4 (5)C36—C31—C32—C331.0 (4)
N2—C12—C13—C14178.9 (3)C3—C31—C32—C33177.4 (3)
O2—C13—C14—C150.1 (3)C31—C32—C33—C342.0 (4)
C12—C13—C14—C15178.7 (3)C32—C33—C34—C351.3 (4)
C13—C14—C15—C160.4 (3)C33—C34—C35—C360.4 (4)
C14—C15—C16—O20.7 (3)C32—C31—C36—C350.6 (4)
C14—C15—C16—C17179.2 (3)C3—C31—C36—C35175.7 (3)
C13—O2—C16—C150.6 (3)C34—C35—C36—C311.3 (4)
C13—O2—C16—C17179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.902.132.622 (3)114
N1—H1N···S10.902.482.970 (3)115
N4—H4N···N30.902.132.620 (3)114
N4—H4N···S10.902.532.986 (3)112
C32—H32···Cl6i0.952.693.461 (3)139
C37—H37···O11.002.343.149 (3)137
C38—H38···O31.002.463.205 (3)131
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC36H24N4O3S·2CHCl3
Mr831.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)13.0957 (15), 31.854 (3), 8.7368 (9)
β (°) 98.857 (3)
V3)3601.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.30 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.845, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
29858, 7802, 4582
Rint0.061
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.108, 1.01
No. of reflections7802
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.902.132.622 (3)114
N1—H1N···S10.902.482.970 (3)115
N4—H4N···N30.902.132.620 (3)114
N4—H4N···S10.902.532.986 (3)112
C32—H32···Cl6i0.952.693.461 (3)139
C37—H37···O11.002.343.149 (3)137
C38—H38···O31.002.463.205 (3)131
Symmetry code: (i) x, y, z+1.
 

References

First citationAydogan, A., Coady, D. J., Kim, S. K., Akar, A., Bielawski, C. W., Marquez, M. & Sessler, J. L. (2008). Angew. Chem. Int. Ed. 47, 9648–9652.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT-Plus . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaltagirone, C. & Gale, P. A. (2009). Chem. Soc. Rev. 38, 520–563.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSessler, J. L., Katayev, E., Pantos, G. D., Scherbakov, P., Reshetova, M. D., Khrustalev, V. N., Lynch, V. M. & Ustynyuk, Yu. A. (2005a). J. Am. Chem. Soc. 127, 11442–11446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSessler, J. L., Roznyatovskiy, V., Pantos, G. D., Borisova, N. E., Reshetova, M. D., Lynch, V. M., Khrustalev, V. N. & Ustynyuk, Yu. A. (2005b). Org. Lett. 7, 5277–5280.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o660-o661
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds