supplementary materials


si2240 scheme

Acta Cryst. (2010). E66, m342    [ doi:10.1107/S1600536810006872 ]

catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato-[kappa]O1)nickel(II)]-di-[mu]-aqua-[diaquasodium]-di-[mu]-aqua] tetrahydrate\]

Z.-D. Tan and B. Yi

Abstract top

In the title complex, {[NaNi(C9H2NO8)(H2O)7]·4H2O}n, the NiII atom has a distorted octahedral coordination, defined by five O atoms from five water molecules and one O atom from one 5-nitrobenzene-1,2,3-tricarboxylate ligand. The Na cation is coordinated by six water O atoms in an irregular trigonal-prismatic geometry. There are seven coordinated water molecules in the asymmetic unit. The Ni and Na atoms are linked by water bridges, forming infinite chains, which are connected by strong O-H...O hydrogen bonds involving the coordinated and uncoordinated water molecules into a three-dimensional network.

Comment top

It is well-known that carboxylate ligands play an important role in coordination chemistry. They usually adopt diverse binding modes as terminal monodentate, chelating to one metal center, bridging to two metal centers (Ding et al., 2010; Li et al., 2006). In the present paper, we synthesized a novel green complex {[NiNa(C9H2NO8)(H2O)7].4(H2O)}n based on 5-nitrobenzene-1,2,3-tricarboxylate ligand. It is isostructural to the copper compound reported by Ding & Zhao, (2010).

The coordination geometries of Ni and Na centers are very close to the values observed in the {[CuNa(C9H2NO8)(H2O)7].4(H2O)}n compound, and also the hydrogen bonds in both structures are very similar (Fig.1). The Ni and Na atoms are linked by water bridges, forming an infinite chain (Fig.2). They are arrayed by turns with the distance of 3.4258 (21)Å and 3.7373 (20)Å between Ni and Na. The chains are connected by strong O—H···O hydrogen bonds involving the coordinated and uncoordinated water molecules into a three-dimensional network (Table 1). In the {[CuNa(C9H2NO8)(H2O)7].4(H2O)}n compound, the six Cu—O bond lengths range between 2.028 (2) and 2.098 (3) Å. It is a rare case that all Cu—O distances are above 2.00 Å, which may be explained by the influence of the Na—O—Cu bridges. But in the title compound, the Ni—O bond lengths range between 2.032 (2) and 2.106 (3) Å and represent normal values.

Related literature top

For related structures see: Ding et al. (2010); Li et al. (2006).

Experimental top

A mixture of 5-nitrobenzene-1,2,3-tricarboxylate ligand (0.1 mmol), Ni(NO3)2 (0.1 mmol) and H2O (20 ml) was treated with a solution of NaOH until the pH about 7-8. and left to stand at room temperature for about a few weeks,then the green crystals were obtained.

Refinement top

Carbon bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A section of the structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) x-1, y, z.]
[Figure 2] Fig. 2. The chain of the title compound along the b axis (the uncoordinated water molecules have been omitted for clarity).
catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato- κO1)nickel(II)]-di-µ-aqua-[diaquasodium]-di-µ-aqua] tetrahydrate] top
Crystal data top
[NaNi(C9H2NO8)(H2O)7]·4H2OZ = 2
Mr = 531.99F(000) = 552
Triclinic, P1Dx = 1.683 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7005 (6) ÅCell parameters from 2858 reflections
b = 13.161 (4) Åθ = 3.1–28.2°
c = 13.586 (4) ŵ = 1.04 mm1
α = 63.415 (6)°T = 296 K
β = 79.076 (6)°Block, green
γ = 81.857 (6)°0.32 × 0.30 × 0.21 mm
V = 1049.8 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3702 independent reflections
Radiation source: fine-focus sealed tube3115 reflections with I > 2σ(I)
graphiteRint = 0.025
φ and ω scanθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 87
Tmin = 0.733, Tmax = 0.812k = 1115
5287 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.162P)2 + 0.8519P]
where P = (Fo2 + 2Fc2)/3
3702 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.85 e Å3
33 restraintsΔρmin = 1.02 e Å3
Crystal data top
[NaNi(C9H2NO8)(H2O)7]·4H2Oγ = 81.857 (6)°
Mr = 531.99V = 1049.8 (4) Å3
Triclinic, P1Z = 2
a = 6.7005 (6) ÅMo Kα radiation
b = 13.161 (4) ŵ = 1.04 mm1
c = 13.586 (4) ÅT = 296 K
α = 63.415 (6)°0.32 × 0.30 × 0.21 mm
β = 79.076 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
3702 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
3115 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.812Rint = 0.025
5287 measured reflectionsθmax = 25.2°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.172Δρmax = 0.85 e Å3
S = 0.82Δρmin = 1.02 e Å3
3702 reflectionsAbsolute structure: ?
280 parametersFlack parameter: ?
33 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9163 (6)0.0491 (3)0.7521 (3)0.0269 (8)
C20.8515 (5)0.1016 (3)0.8336 (3)0.0228 (7)
C30.7844 (6)0.0308 (3)0.9447 (3)0.0252 (8)
H30.78850.04760.96910.030*
C40.7123 (5)0.0780 (3)1.0174 (3)0.0248 (8)
C50.7116 (5)0.1939 (3)0.9862 (3)0.0252 (8)
H50.66190.22371.03720.030*
C60.7864 (5)0.2642 (3)0.8773 (3)0.0232 (8)
C70.8516 (5)0.2191 (3)0.7993 (3)0.0226 (8)
C80.9163 (6)0.2966 (3)0.6771 (3)0.0232 (7)
C90.7955 (6)0.3896 (3)0.8445 (3)0.0247 (8)
N10.6278 (5)0.0040 (3)1.1322 (2)0.0304 (7)
Na10.4252 (3)0.71871 (14)0.62371 (12)0.0367 (4)
Ni10.95998 (7)0.61127 (4)0.67564 (3)0.0235 (2)
O11.0145 (5)0.0455 (2)0.7877 (2)0.0384 (7)
O20.8649 (4)0.1028 (2)0.6566 (2)0.0344 (7)
O31.0990 (4)0.2896 (2)0.6371 (2)0.0292 (6)
O40.7775 (4)0.3631 (2)0.62481 (19)0.0278 (6)
O50.9363 (4)0.4410 (2)0.7681 (2)0.0252 (6)
O60.6652 (5)0.4346 (2)0.8957 (2)0.0395 (7)
O70.5232 (5)0.0489 (3)1.1881 (2)0.0468 (8)
O80.6619 (5)0.0989 (2)1.1654 (2)0.0440 (8)
O5W0.5203 (6)0.8170 (3)0.4318 (3)0.0609 (10)
H10W0.42160.81290.40410.091*
H9W0.62990.82220.38850.091*
O6W0.3273 (5)0.8978 (3)0.6356 (3)0.0474 (8)
H12W0.25310.92890.67300.071*
H11W0.45160.90040.63610.071*
O4W0.6914 (4)0.6549 (2)0.7614 (2)0.0344 (6)
H8W0.72880.69990.78180.052*
H7W0.67620.58990.81440.052*
O2W0.7733 (4)0.5951 (2)0.5785 (2)0.0286 (6)
H3W0.79180.52540.59440.043*
H4W0.79930.63460.50960.043*
O3W1.0007 (5)0.7794 (2)0.5696 (2)0.0362 (7)
H5W1.03720.80140.50090.054*
H6W0.93990.83260.58380.054*
O1W1.2328 (4)0.5797 (2)0.5931 (2)0.0294 (6)
H1W1.29430.51590.62470.044*
H2W1.24080.59990.52450.044*
O11W1.1438 (4)0.6187 (2)0.7811 (2)0.0317 (6)
H21W1.18560.55310.82380.048*
H22W1.07350.65260.81700.048*
O9W0.3769 (4)0.3668 (2)0.7147 (2)0.0367 (7)
H17W0.50130.36390.68990.055*
H18W0.31030.32950.69700.055*
O10W0.2681 (5)0.3942 (3)0.9122 (2)0.0438 (8)
H19W0.27490.37690.85920.066*
H20W0.38330.40690.91850.066*
O7W0.8872 (5)0.7396 (3)0.8714 (3)0.0496 (8)
H14W0.92880.80410.85200.074*
H13W0.85650.70500.94070.074*
O8W0.7517 (5)0.9492 (3)0.5860 (2)0.0424 (7)
H15W0.76510.97940.62710.064*
H16W0.75850.99660.51890.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.0227 (18)0.0295 (18)0.0097 (16)0.0020 (15)0.0105 (15)
C20.0208 (18)0.0251 (18)0.0231 (16)0.0018 (14)0.0042 (14)0.0103 (14)
C30.0242 (19)0.0216 (17)0.0278 (17)0.0024 (15)0.0073 (14)0.0072 (15)
C40.0229 (19)0.0274 (19)0.0193 (16)0.0061 (15)0.0060 (14)0.0035 (15)
C50.024 (2)0.0290 (19)0.0247 (17)0.0032 (15)0.0048 (14)0.0123 (15)
C60.0212 (18)0.0256 (18)0.0238 (16)0.0049 (15)0.0054 (14)0.0097 (15)
C70.0190 (18)0.0250 (18)0.0237 (17)0.0026 (14)0.0076 (14)0.0083 (14)
C80.027 (2)0.0215 (17)0.0224 (16)0.0049 (15)0.0060 (14)0.0086 (14)
C90.027 (2)0.0268 (18)0.0219 (16)0.0035 (16)0.0058 (15)0.0102 (15)
N10.0286 (18)0.0352 (19)0.0218 (15)0.0069 (15)0.0034 (13)0.0059 (14)
Na10.0375 (10)0.0382 (9)0.0305 (8)0.0049 (7)0.0042 (7)0.0110 (7)
Ni10.0249 (3)0.0215 (3)0.0229 (3)0.0038 (2)0.0044 (2)0.0076 (2)
O10.0469 (19)0.0283 (14)0.0402 (15)0.0007 (13)0.0059 (13)0.0159 (13)
O20.0445 (18)0.0354 (15)0.0258 (13)0.0081 (13)0.0083 (12)0.0128 (12)
O30.0239 (14)0.0325 (14)0.0257 (12)0.0051 (11)0.0023 (10)0.0073 (11)
O40.0290 (15)0.0288 (13)0.0224 (12)0.0009 (11)0.0094 (10)0.0062 (11)
O50.0265 (14)0.0211 (12)0.0263 (12)0.0054 (10)0.0020 (10)0.0082 (10)
O60.0418 (18)0.0303 (15)0.0416 (16)0.0056 (13)0.0098 (13)0.0165 (13)
O70.051 (2)0.0521 (19)0.0291 (14)0.0078 (16)0.0046 (14)0.0131 (14)
O80.053 (2)0.0287 (16)0.0350 (15)0.0074 (14)0.0063 (14)0.0010 (13)
O5W0.054 (2)0.068 (2)0.0413 (17)0.0225 (19)0.0073 (15)0.0142 (17)
O6W0.0432 (19)0.059 (2)0.0490 (17)0.0078 (16)0.0051 (14)0.0310 (16)
O4W0.0354 (16)0.0297 (14)0.0360 (14)0.0046 (12)0.0022 (12)0.0127 (12)
O2W0.0330 (15)0.0268 (13)0.0237 (12)0.0077 (11)0.0051 (10)0.0068 (11)
O3W0.0505 (19)0.0242 (13)0.0279 (13)0.0034 (12)0.0011 (12)0.0073 (11)
O1W0.0297 (15)0.0306 (14)0.0255 (12)0.0022 (11)0.0057 (11)0.0093 (11)
O11W0.0368 (16)0.0323 (14)0.0285 (13)0.0041 (12)0.0066 (11)0.0142 (11)
O9W0.0270 (15)0.0408 (16)0.0450 (16)0.0012 (13)0.0077 (12)0.0208 (14)
O10W0.0432 (19)0.0519 (18)0.0344 (15)0.0023 (15)0.0077 (13)0.0164 (14)
O7W0.074 (2)0.0348 (16)0.0421 (16)0.0121 (16)0.0063 (16)0.0217 (14)
O8W0.051 (2)0.0383 (16)0.0436 (16)0.0027 (14)0.0094 (14)0.0216 (14)
Geometric parameters (Å, °) top
C1—O11.251 (5)Ni1—O1W2.048 (3)
C1—O21.257 (4)Ni1—O3W2.053 (3)
C1—C21.520 (5)Ni1—O2W2.074 (3)
C2—C31.397 (5)Ni1—O11W2.100 (3)
C2—C71.402 (5)Ni1—O4W2.106 (3)
C3—C41.371 (5)Ni1—Na1ii3.4258 (18)
C3—H30.9300O5W—H10W0.8400
C4—C51.387 (5)O5W—H9W0.8400
C4—N11.471 (4)O6W—H12W0.8400
C5—C61.386 (5)O6W—H11W0.8400
C5—H50.9300O4W—H8W0.8400
C6—C71.407 (5)O4W—H7W0.8400
C6—C91.512 (5)O2W—H3W0.8400
C7—C81.523 (5)O2W—H4W0.8400
C8—O31.250 (4)O3W—Na1ii2.982 (3)
C8—O41.265 (4)O3W—H5W0.8400
C9—O61.261 (5)O3W—H6W0.8400
C9—O51.268 (4)O1W—Na1ii2.595 (3)
N1—O81.222 (4)O1W—H1W0.8400
N1—O71.225 (5)O1W—H2W0.8400
Na1—O5W2.337 (4)O11W—Na1ii2.553 (3)
Na1—O6W2.424 (4)O11W—H21W0.8400
Na1—O11Wi2.553 (3)O11W—H22W0.8400
Na1—O1Wi2.595 (3)O9W—H17W0.8401
Na1—O4W2.611 (3)O9W—H18W0.8400
Na1—O2W2.782 (3)O10W—H19W0.8400
Na1—O3Wi2.982 (3)O10W—H20W0.8401
Na1—Ni1i3.4258 (18)O7W—H14W0.8400
Na1—H10W2.6736O7W—H13W0.8400
Na1—H11W2.5038O8W—H15W0.8400
Ni1—O52.032 (2)O8W—H16W0.8400
O1—C1—O2126.1 (4)O1Wi—Na1—H11W153.1
O1—C1—C2116.1 (3)O4W—Na1—H11W78.9
O2—C1—C2117.8 (3)O2W—Na1—H11W120.7
C3—C2—C7119.5 (3)O3Wi—Na1—H11W93.9
C3—C2—C1118.8 (3)Ni1i—Na1—H11W120.3
C7—C2—C1121.7 (3)H10W—Na1—H11W96.2
C4—C3—C2119.4 (3)O5—Ni1—O1W89.70 (11)
C4—C3—H3120.3O5—Ni1—O3W174.16 (10)
C2—C3—H3120.3O1W—Ni1—O3W85.19 (11)
C3—C4—C5122.4 (3)O5—Ni1—O2W85.04 (10)
C3—C4—N1119.1 (3)O1W—Ni1—O2W97.31 (10)
C5—C4—N1118.5 (3)O3W—Ni1—O2W92.77 (11)
C6—C5—C4118.6 (3)O5—Ni1—O11W91.88 (10)
C6—C5—H5120.7O1W—Ni1—O11W83.66 (10)
C4—C5—H5120.7O3W—Ni1—O11W90.39 (11)
C5—C6—C7120.3 (3)O2W—Ni1—O11W176.77 (10)
C5—C6—C9118.7 (3)O5—Ni1—O4W93.85 (11)
C7—C6—C9121.0 (3)O1W—Ni1—O4W175.04 (11)
C2—C7—C6119.6 (3)O3W—Ni1—O4W91.42 (11)
C2—C7—C8119.3 (3)O2W—Ni1—O4W86.46 (11)
C6—C7—C8121.0 (3)O11W—Ni1—O4W92.76 (11)
O3—C8—O4125.7 (3)O5—Ni1—Na1ii118.34 (8)
O3—C8—C7118.2 (3)O1W—Ni1—Na1ii49.05 (8)
O4—C8—C7116.1 (3)O3W—Ni1—Na1ii59.89 (9)
O6—C9—O5125.0 (3)O2W—Ni1—Na1ii134.65 (8)
O6—C9—C6117.9 (3)O11W—Ni1—Na1ii47.99 (8)
O5—C9—C6117.1 (3)O4W—Ni1—Na1ii126.02 (9)
O8—N1—O7123.8 (3)C9—O5—Ni1128.6 (2)
O8—N1—C4118.2 (3)Na1—O5W—H10W104.5
O7—N1—C4118.0 (3)Na1—O5W—H9W134.6
O5W—Na1—O6W90.09 (13)H10W—O5W—H9W111.2
O5W—Na1—O11Wi146.60 (14)Na1—O6W—H12W144.4
O6W—Na1—O11Wi91.75 (11)Na1—O6W—H11W85.6
O5W—Na1—O1Wi90.25 (13)H12W—O6W—H11W111.8
O6W—Na1—O1Wi133.78 (12)Ni1—O4W—Na1104.27 (11)
O11Wi—Na1—O1Wi65.02 (9)Ni1—O4W—H8W103.8
O5W—Na1—O4W121.28 (13)Na1—O4W—H8W122.0
O6W—Na1—O4W94.00 (11)Ni1—O4W—H7W96.9
O11Wi—Na1—O4W91.85 (10)Na1—O4W—H7W114.2
O1Wi—Na1—O4W124.33 (10)H8W—O4W—H7W111.5
O5W—Na1—O2W75.95 (10)Ni1—O2W—Na199.62 (11)
O6W—Na1—O2W139.81 (12)Ni1—O2W—H3W101.7
O11Wi—Na1—O2W120.48 (10)Na1—O2W—H3W129.8
O1Wi—Na1—O2W84.54 (9)Ni1—O2W—H4W116.3
O4W—Na1—O2W64.05 (9)Na1—O2W—H4W99.2
O5W—Na1—O3Wi84.67 (11)H3W—O2W—H4W110.8
O6W—Na1—O3Wi74.83 (10)Ni1—O3W—Na1ii83.57 (10)
O11Wi—Na1—O3Wi63.77 (9)Ni1—O3W—H5W122.1
O1Wi—Na1—O3Wi59.21 (9)Na1ii—O3W—H5W93.9
O4W—Na1—O3Wi152.24 (10)Ni1—O3W—H6W122.3
O2W—Na1—O3Wi138.79 (10)Na1ii—O3W—H6W114.5
O5W—Na1—Ni1i109.49 (12)H5W—O3W—H6W111.2
O6W—Na1—Ni1i101.28 (9)Ni1—O1W—Na1ii94.35 (11)
O11Wi—Na1—Ni1i37.68 (6)Ni1—O1W—H1W117.0
O1Wi—Na1—Ni1i36.60 (6)Na1ii—O1W—H1W104.3
O4W—Na1—Ni1i126.75 (8)Ni1—O1W—H2W117.9
O2W—Na1—Ni1i118.89 (8)Na1ii—O1W—H2W108.9
O3Wi—Na1—Ni1i36.54 (6)H1W—O1W—H2W111.6
O5W—Na1—H10W17.7Ni1—O11W—Na1ii94.33 (10)
O6W—Na1—H10W93.1Ni1—O11W—H21W110.8
O11Wi—Na1—H10W129.0Na1ii—O11W—H21W110.9
O1Wi—Na1—H10W75.6Ni1—O11W—H22W107.3
O4W—Na1—H10W138.2Na1ii—O11W—H22W120.5
O2W—Na1—H10W84.7H21W—O11W—H22W111.5
O3Wi—Na1—H10W68.8H17W—O9W—H18W111.5
Ni1i—Na1—H10W91.8H19W—O10W—H20W111.2
O5W—Na1—H11W87.5H14W—O7W—H13W111.9
O6W—Na1—H11W19.5H15W—O8W—H16W111.9
O11Wi—Na1—H11W104.4
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O8W—H16W···O6Wiii0.842.072.876 (4)161
O8W—H15W···O2iv0.842.062.835 (4)153
O7W—H13W···O10Wv0.841.932.748 (4)163
O7W—H14W···O1iv0.841.902.731 (4)172
O10W—H20W···O60.841.922.735 (5)165
O10W—H19W···O9W0.842.012.813 (4)160
O9W—H18W···O3i0.841.992.802 (4)161
O9W—H17W···O40.841.892.734 (4)176
O11W—H22W···O7W0.841.852.676 (4)168
O11W—H21W···O10Wii0.841.952.784 (4)173
O1W—H2W···O4vi0.841.892.721 (3)172
O1W—H1W···O9Wii0.841.862.685 (4)168
O3W—H6W···O8W0.841.852.660 (4)162
O3W—H5W···O2vi0.841.972.783 (4)162
O2W—H4W···O3vi0.841.832.657 (3)170
O2W—H3W···O40.842.002.826 (4)168
O4W—H7W···O60.841.842.655 (4)163
O4W—H8W···O7W0.842.022.801 (4)154
O6W—H11W···O8W0.842.092.900 (5)161
O6W—H12W···O1vii0.842.112.919 (4)160
O5W—H9W···O3vi0.842.252.935 (4)139
O5W—H10W···O2viii0.842.182.913 (5)145
Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z+2; (i) x−1, y, z; (ii) x+1, y, z; (vi) −x+2, −y+1, −z+1; (vii) x−1, y+1, z; (viii) −x+1, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O8W—H16W···O6Wi0.842.072.876 (4)161
O8W—H15W···O2ii0.842.062.835 (4)153
O7W—H13W···O10Wiii0.841.932.748 (4)163
O7W—H14W···O1ii0.841.902.731 (4)172
O10W—H20W···O60.841.922.735 (5)165
O10W—H19W···O9W0.842.012.813 (4)160
O9W—H18W···O3iv0.841.992.802 (4)161
O9W—H17W···O40.841.892.734 (4)176
O11W—H22W···O7W0.841.852.676 (4)168
O11W—H21W···O10Wv0.841.952.784 (4)173
O1W—H2W···O4vi0.841.892.721 (3)172
O1W—H1W···O9Wv0.841.862.685 (4)168
O3W—H6W···O8W0.841.852.660 (4)162
O3W—H5W···O2vi0.841.972.783 (4)162
O2W—H4W···O3vi0.841.832.657 (3)170
O2W—H3W···O40.842.002.826 (4)168
O4W—H7W···O60.841.842.655 (4)163
O4W—H8W···O7W0.842.022.801 (4)154
O6W—H11W···O8W0.842.092.900 (5)161
O6W—H12W···O1vii0.842.112.919 (4)160
O5W—H9W···O3vi0.842.252.935 (4)139
O5W—H10W···O2viii0.842.182.913 (5)145
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+2; (iv) x−1, y, z; (v) x+1, y, z; (vi) −x+2, −y+1, −z+1; (vii) x−1, y+1, z; (viii) −x+1, −y+1, −z+1.
Acknowledgements top

The authors acknowledge the Scientific Research Project of Hunan Department of Education (No. 09c259) for support of this work.

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, Y.-J. & Zhao, C.-X. (2010). Acta Cryst. E66, m132–m133.

Li, Z.-F., Wang, C.-X., Wang, P. & Zhang, Q.-H. (2006). Acta Cryst. E62, m914–m915.

Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.