organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo-4,6-di­methyl­pyrimidine

aHenan Industrial University Chemical Technology Vocational College, Zhengzhou 450042, People's Republic of China, and bDepartment of Chemistry, Henan Key Laboratory of Chemical, Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: maopingsong@zzu.edu.cn

(Received 3 February 2010; accepted 10 February 2010; online 24 February 2010)

In the title compound, C6H7IN2, the non-H atoms of the mol­ecule are located on a crystallographic mirror plane; the H atoms of the methyl groups are therefore disordered over two positions of equal occupancy. In the crystal structure, short inter­molecular I⋯N contacts [3.390 (3) Å] are found, linking the mol­ecules into zigzag chains. In addition, there are inter­molecular ππ stacking inter­actions between the pyrimidine rings of adjacent mol­ecules [centroid–centroid distance = 3.5168 (10) Å], resulting in a two-dimensional supra­molecular architecture.

Related literature

For applications of pyrimidine derivatives, see: Chinchilla et al. (2004[Chinchilla, R., Najera, C. & Yus, M. (2004). Chem. Rev. 104, 2667-2722.]); Xu et al. (2009a[Xu, C., Wang, Z.-Q., Cen, F.-F., Cheng, L. & Ji, B.-M. (2009a). Acta Cryst. E65, o2785.],b[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics 28, 1909-1916.]). For halogen–electronegative atom inter­actions, see: Lommerse et al. (1996[Lommerse, J. P. M., Stone, A. J., Taylor, R. & Ottolenghi, M. (1996). J. Am. Chem. Soc. 118, 3108-3116.]). For the synthesis of 4,6-dimethyl-2-chloro­pyrimidine, see: Kosolapoff & Roy (1961[Kosolapoff, G. M. & Roy, C. H. (1961). J. Org. Chem. 26, 1895-1898.]) and literature cited therein.

[Scheme 1]

Experimental

Crystal data
  • C6H7IN2

  • Mr = 234.04

  • Orthorhombic, P n m a

  • a = 7.930 (2) Å

  • b = 7.0256 (19) Å

  • c = 14.499 (4) Å

  • V = 807.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.88 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.370, Tmax = 0.496

  • 5541 measured reflections

  • 817 independent reflections

  • 739 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.10

  • 817 reflections

  • 57 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of pyrimidine are important chemical materials (Chinchilla et al., 2004). Among them, 4,6-dimethyl-2-iodopyrimidine is a good partner in cross-coupling reaction giving a variety of pyrimidine ligands (Xu et al., 2009a, b). The molecular structure of the related title compound is shown in Fig. 1. The molecule is located on a crystallographic mirror plane, thus the H atoms of the methyl groups are disordered over two positions, with site-occupation factors fixed at 0.5. The interesting feature of the crystal structure is short intermolecular I···N contacts [3.390 (3) Å] (Lommerse et al., 1996), which is obviously shorter than the sum of the van der Waals radii of the relevant atoms. In addtion, there are strong intermolecular ππ stacking interactions between the pyrimidine rings of adjacent molecules [centroid-centroid distance = 3.5168 (10) Å], resulting in a two-dimensional supramolecular architecture (Fig.2).

Related literature top

For applications of pyrimidine derivatives, see: Chinchilla et al. (2004); Xu et al. (2009a,b). For halogen–electronegative atom interactions, see: Lommerse et al. (1996). For the synthesis of 4,6-dimethyl-2-chloropyrimidine, see: Kosolapoff & Roy (1961) and literature cited therein.

Experimental top

The title compound was prepared as described in literature (Kosolapoff & Roy 1961) and recrystallized from dichloromethane-petroleum ether solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) and (1.5Ueq for methyl H).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level, the disordered H atoms are omitted.
[Figure 2] Fig. 2. Partial view of the crystal packing showing the short intermolecular I···N contacts and ππ stacking interactions.
2-Iodo-4,6-dimethylpyrimidine top
Crystal data top
C6H7IN2Dx = 1.924 Mg m3
Mr = 234.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 2976 reflections
a = 7.930 (2) Åθ = 2.8–24.9°
b = 7.0256 (19) ŵ = 3.88 mm1
c = 14.499 (4) ÅT = 296 K
V = 807.8 (4) Å3Block, colourless
Z = 40.32 × 0.25 × 0.21 mm
F(000) = 440
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
817 independent reflections
Radiation source: fine-focus sealed tube739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.370, Tmax = 0.496k = 88
5541 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.259P]
where P = (Fo2 + 2Fc2)/3
817 reflections(Δ/σ)max = 0.001
57 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H7IN2V = 807.8 (4) Å3
Mr = 234.04Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.930 (2) ŵ = 3.88 mm1
b = 7.0256 (19) ÅT = 296 K
c = 14.499 (4) Å0.32 × 0.25 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
817 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
739 reflections with I > 2σ(I)
Tmin = 0.370, Tmax = 0.496Rint = 0.029
5541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.10Δρmax = 0.81 e Å3
817 reflectionsΔρmin = 0.21 e Å3
57 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4205 (6)0.25000.4216 (3)0.0559 (10)
C20.4224 (8)0.25000.5763 (3)0.0708 (13)
C30.5963 (8)0.25000.5741 (3)0.0746 (14)
H30.65870.25000.62850.090*
C40.6751 (7)0.25000.4899 (3)0.0680 (12)
C50.3278 (11)0.25000.6665 (5)0.108 (2)
H5A0.22990.17030.66120.162*0.50
H5B0.29350.37750.68120.162*0.50
H5C0.39960.20220.71450.162*0.50
C60.8651 (8)0.25000.4820 (5)0.107 (2)
H6A0.90470.12150.47610.161*0.50
H6B0.91320.30680.53610.161*0.50
H6C0.89800.32180.42860.161*0.50
I10.27885 (5)0.25000.29859 (2)0.07396 (18)
N10.3314 (6)0.25000.4980 (2)0.0656 (9)
N20.5862 (5)0.25000.4101 (2)0.0616 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (3)0.046 (2)0.058 (2)0.0000.002 (2)0.000
C20.107 (4)0.047 (2)0.058 (3)0.0000.007 (3)0.000
C30.106 (4)0.059 (3)0.059 (3)0.0000.014 (3)0.000
C40.076 (3)0.064 (3)0.064 (3)0.0000.012 (2)0.000
C50.158 (7)0.098 (4)0.068 (3)0.0000.022 (4)0.000
C60.073 (4)0.151 (6)0.098 (4)0.0000.014 (3)0.000
I10.0685 (3)0.0874 (3)0.0660 (3)0.0000.01043 (13)0.000
N10.075 (2)0.065 (2)0.057 (2)0.0000.0106 (19)0.000
N20.064 (2)0.062 (2)0.059 (2)0.0000.0017 (17)0.000
Geometric parameters (Å, º) top
C1—N11.314 (6)C4—N21.356 (6)
C1—N21.325 (6)C4—C61.511 (9)
C1—I12.108 (4)C5—H5A0.9600
C2—N11.345 (7)C5—H5B0.9600
C2—C31.380 (9)C5—H5C0.9600
C2—C51.507 (8)C6—H6A0.9600
C3—C41.371 (7)C6—H6B0.9600
C3—H30.9300C6—H6C0.9600
N1—C1—N2129.8 (4)C2—C5—H5B109.5
N1—C1—I1115.3 (3)H5A—C5—H5B109.5
N2—C1—I1114.9 (3)C2—C5—H5C109.5
N1—C2—C3121.1 (5)H5A—C5—H5C109.5
N1—C2—C5117.7 (6)H5B—C5—H5C109.5
C3—C2—C5121.2 (6)C4—C6—H6A109.5
C4—C3—C2118.4 (5)C4—C6—H6B109.5
C4—C3—H3120.8H6A—C6—H6B109.5
C2—C3—H3120.8C4—C6—H6C109.5
N2—C4—C3121.6 (5)H6A—C6—H6C109.5
N2—C4—C6116.9 (4)H6B—C6—H6C109.5
C3—C4—C6121.5 (5)C1—N1—C2115.1 (5)
C2—C5—H5A109.5C1—N2—C4114.1 (4)
N1—C2—C3—C40.0C3—C2—N1—C10.0
C5—C2—C3—C4180.0C5—C2—N1—C1180.0
C2—C3—C4—N20.0N1—C1—N2—C40.0
C2—C3—C4—C6180.0I1—C1—N2—C4180.0
N2—C1—N1—C20.0C3—C4—N2—C10.00
I1—C1—N1—C2180.0C6—C4—N2—C1180.0

Experimental details

Crystal data
Chemical formulaC6H7IN2
Mr234.04
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)7.930 (2), 7.0256 (19), 14.499 (4)
V3)807.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.88
Crystal size (mm)0.32 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.370, 0.496
No. of measured, independent and
observed [I > 2σ(I)] reflections
5541, 817, 739
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.10
No. of reflections817
No. of parameters57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (No. 20872133) and the Natural Science Foundation of Henan Education Department (No. 2009 A150027).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinchilla, R., Najera, C. & Yus, M. (2004). Chem. Rev. 104, 2667–2722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKosolapoff, G. M. & Roy, C. H. (1961). J. Org. Chem. 26, 1895–1898.  CrossRef CAS Web of Science Google Scholar
First citationLommerse, J. P. M., Stone, A. J., Taylor, R. & Ottolenghi, M. (1996). J. Am. Chem. Soc. 118, 3108–3116.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C., Wang, Z.-Q., Cen, F.-F., Cheng, L. & Ji, B.-M. (2009a). Acta Cryst. E65, o2785.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics 28, 1909–1916.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds