metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chlorido(di­methyl sulfoxide-κS)(pyridine-2-carboxyl­ato-κ2N,O)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 5 February 2010; accepted 10 February 2010; online 13 February 2010)

In the title complex, [Pt(C6H4NO2)Cl(C2H6OS)], the PtII ion is in a distorted square-planar environment defined by the N and O atoms from the chelating pyridine-2-carboxyl­ate (pic) anionic ligand, one S atom of the dimethyl sulfoxide mol­ecule and one Cl ion. The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through all the atoms of the complex except the methyl atoms of the dimethyl sulfoxide. The mol­ecules are stacked in columns along the b axis with a Pt⋯Pt distance of 4.9508 (5) Å. Within the column, inter­molecular C—H⋯O hydrogen bonds and weak ππ inter­actions between adjacent pyridine rings are present, the shortest centroid–centroid distance being 5.153 (4) Å.

Related literature

For the crystal structure of the title complex with the monoclinic space group P21/n, see: Annibale et al. (1986[Annibale, G., Cattalini, L., Canovese, L., Pitteri, B., Tiripicchio, A., Tiripicchio Camellini, M. & Tobe, M. L. (1986). J. Chem. Soc. Dalton Trans. pp. 1101-1105.]). For details of Pt(IV)–pic complexes, see: Griffith et al. (2005[Griffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956-961.]); Kim et al. (2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m667.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C6H4NO2)Cl(C2H6OS)]

  • Mr = 430.77

  • Orthorhombic, P n m a

  • a = 19.5900 (15) Å

  • b = 6.9450 (6) Å

  • c = 8.1266 (6) Å

  • V = 1105.64 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.11 mm−1

  • T = 200 K

  • 0.21 × 0.17 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.631, Tmax = 1.000

  • 6423 measured reflections

  • 1169 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.10

  • 1169 reflections

  • 89 parameters

  • H-atom parameters constrained

  • Δρmax = 2.60 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—O1 2.020 (5)
Pt1—N1 2.031 (7)
Pt1—S1 2.202 (2)
Pt1—Cl1 2.2945 (19)
O1—Pt1—N1 81.0 (2)
O1—Pt1—S1 177.70 (16)
N1—Pt1—S1 101.31 (19)
O1—Pt1—Cl1 88.98 (16)
N1—Pt1—Cl1 169.97 (19)
S1—Pt1—Cl1 88.72 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3 0.95 2.16 2.995 (11) 145
C2—H2⋯O1i 0.95 2.35 3.255 (11) 158
C7—H7A⋯O2ii 0.98 2.42 3.323 (8) 152
C7—H7B⋯Cl1 0.98 2.77 3.355 (7) 119
Symmetry codes: (i) x, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [Pt(C6H4NO2)Cl(C2H6OS)], crystallized in the orthorhombic space group Pnma, whereas, in the previously reported X-ray structure analysis, the complex crystallized in the monoclinic space group P21/n (Annibale et al., 1986). The PtII ion lies in a distorted square-planar environment defined by the N and O atoms from the chelating pyridine-2-carboxylate (pic) anionic ligand, one S atom of the dimethyl sulfoxide molecule and one Cl ion (Fig. 1). The tight O1—Pt1—N1 chelate angle [81.0 (2)°] results in non-linear trans axes [<O1—Pt1—S1 = 177.70 (16)° and <N1—Pt1—Cl1 = 169.97 (19)°] (Table 1). The complex is disposed about a crystallographic mirror plane parallel to the ac plane passing through all the atoms of the complex at the special positions (x,1/4,z), except the methyl atoms of the dimethyl sulfoxide (Fig. 2). The molecules are stacked in columns along the b axis with a Pt···Pt distance of 4.9508 (5) Å. In the column, intermolecular C—H···O hydrogen bond (Table 2) and weak π-π interactions between adjacent pyridine rings are present, the shortest centroid-centroid distance being 5.153 (4) Å, and the ring planes are parallel and shifted for 3.807 Å. The intramolecular C—H···O and C—H···Cl hydrogen bonds are also observed (Table 2).

Related literature top

For the crystal structure of the title complex with the monoclinic space group P21/n, see: Annibale et al. (1986). For details of Pt(IV)–pic complexes, see: Griffith et al. (2005); Kim et al. (2009).

Experimental top

Single crystals of the title complex were unexpectedly obtained by reacting K2PtCl4 (0.2000 g, 0.482 mmol) and pyridine-2-carboxylic acid (0.1192 g, 0.968 mmol) in H2O (10 ml) under reflux for 5 h. Crystals suitable for X-ray analysis were obtained by slow evaporation from a dimethyl sulfoxide solution of the pale yellow reaction product at 80 °C.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.60 e Å-3) and the deepest hole (-0.79 e Å-3) in the difference Fourier map are located 0.87 and 1.04 Å, respectively, from the atom Pt1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [Symmetry code: (a) x, 1/2 - y, z].
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bond interactions are drawn with dashed lines.
trans-Chlorido(dimethyl sulfoxide-κS)(pyridine-2-carboxylato-κ2N,O)platinum(II) top
Crystal data top
[Pt(C6H4NO2)Cl(C2H6OS)]F(000) = 800
Mr = 430.77Dx = 2.588 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3961 reflections
a = 19.5900 (15) Åθ = 2.7–26.0°
b = 6.9450 (6) ŵ = 13.11 mm1
c = 8.1266 (6) ÅT = 200 K
V = 1105.64 (15) Å3Block, colorless
Z = 40.21 × 0.17 × 0.09 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1169 independent reflections
Radiation source: fine-focus sealed tube1085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2423
Tmin = 0.631, Tmax = 1.000k = 88
6423 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.8204P]
where P = (Fo2 + 2Fc2)/3
1169 reflections(Δ/σ)max = 0.001
89 parametersΔρmax = 2.60 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Pt(C6H4NO2)Cl(C2H6OS)]V = 1105.64 (15) Å3
Mr = 430.77Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.5900 (15) ŵ = 13.11 mm1
b = 6.9450 (6) ÅT = 200 K
c = 8.1266 (6) Å0.21 × 0.17 × 0.09 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1085 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 1.000Rint = 0.042
6423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.10Δρmax = 2.60 e Å3
1169 reflectionsΔρmin = 0.79 e Å3
89 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.087714 (15)0.25001.04929 (4)0.01771 (13)
Cl10.14026 (11)0.25001.3016 (2)0.0265 (5)
S10.18928 (11)0.25000.9332 (2)0.0209 (4)
O10.0036 (3)0.25001.1647 (7)0.0243 (13)
O20.1160 (3)0.25001.1182 (8)0.0311 (14)
O30.1947 (3)0.25000.7524 (8)0.0353 (15)
N10.0258 (3)0.25000.8489 (8)0.0204 (15)
C10.0441 (5)0.25000.6884 (10)0.029 (2)
H10.09110.25000.65960.035*
C20.0051 (5)0.25000.5652 (11)0.035 (2)
H20.00850.25000.45300.042*
C30.0726 (4)0.25000.6045 (12)0.0274 (19)
H30.10660.25000.52110.033*
C40.0903 (4)0.25000.7672 (12)0.028 (2)
H40.13720.25000.79680.034*
C50.0410 (4)0.25000.8904 (11)0.0205 (17)
C60.0570 (4)0.25001.0681 (10)0.0217 (18)
C70.2372 (3)0.0507 (9)1.0071 (8)0.0300 (14)
H7A0.21450.06940.97550.045*
H7B0.24050.05771.12730.045*
H7C0.28320.05390.95930.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0175 (2)0.02225 (19)0.0134 (2)0.0000.00107 (12)0.000
Cl10.0231 (11)0.0425 (12)0.0138 (10)0.0000.0040 (8)0.000
S10.0195 (11)0.0258 (10)0.0174 (10)0.0000.0024 (8)0.000
O10.018 (3)0.044 (3)0.011 (3)0.0000.003 (2)0.000
O20.024 (3)0.047 (4)0.022 (3)0.0000.003 (3)0.000
O30.036 (4)0.055 (4)0.015 (3)0.0000.016 (3)0.000
N10.023 (4)0.019 (3)0.019 (4)0.0000.000 (3)0.000
C10.028 (5)0.049 (5)0.009 (4)0.0000.003 (3)0.000
C20.037 (6)0.047 (6)0.020 (5)0.0000.001 (4)0.000
C30.021 (5)0.038 (5)0.023 (5)0.0000.006 (4)0.000
C40.023 (5)0.033 (5)0.028 (5)0.0000.001 (4)0.000
C50.023 (4)0.013 (3)0.025 (4)0.0000.002 (4)0.000
C60.019 (4)0.024 (4)0.022 (5)0.0000.002 (3)0.000
C70.023 (3)0.029 (3)0.038 (4)0.007 (3)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
Pt1—O12.020 (5)C1—H10.9500
Pt1—N12.031 (7)C2—C31.361 (13)
Pt1—S12.202 (2)C2—H20.9500
Pt1—Cl12.2945 (19)C3—C41.367 (14)
S1—O31.473 (6)C3—H30.9500
S1—C7i1.778 (6)C4—C51.390 (13)
S1—C71.778 (6)C4—H40.9500
O1—C61.308 (10)C5—C61.477 (12)
O2—C61.225 (11)C7—H7A0.9800
N1—C51.352 (10)C7—H7B0.9800
N1—C11.352 (11)C7—H7C0.9800
C1—C21.390 (13)
O1—Pt1—N181.0 (2)C3—C2—H2119.8
O1—Pt1—S1177.70 (16)C1—C2—H2119.8
N1—Pt1—S1101.31 (19)C2—C3—C4118.2 (8)
O1—Pt1—Cl188.98 (16)C2—C3—H3120.9
N1—Pt1—Cl1169.97 (19)C4—C3—H3120.9
S1—Pt1—Cl188.72 (7)C3—C4—C5121.4 (8)
O3—S1—C7i107.4 (3)C3—C4—H4119.3
O3—S1—C7107.4 (3)C5—C4—H4119.3
C7i—S1—C7102.3 (5)N1—C5—C4119.5 (8)
O3—S1—Pt1119.5 (3)N1—C5—C6116.7 (7)
C7i—S1—Pt1109.4 (2)C4—C5—C6123.8 (8)
C7—S1—Pt1109.4 (2)O2—C6—O1123.7 (8)
C6—O1—Pt1115.4 (5)O2—C6—C5121.7 (8)
C5—N1—C1119.8 (7)O1—C6—C5114.7 (7)
C5—N1—Pt1112.2 (6)S1—C7—H7A109.5
C1—N1—Pt1127.9 (6)S1—C7—H7B109.5
N1—C1—C2120.7 (8)H7A—C7—H7B109.5
N1—C1—H1119.6S1—C7—H7C109.5
C2—C1—H1119.6H7A—C7—H7C109.5
C3—C2—C1120.3 (9)H7B—C7—H7C109.5
N1—Pt1—S1—O30.0N1—C1—C2—C30.000 (2)
Cl1—Pt1—S1—O3180.0C1—C2—C3—C40.000 (2)
N1—Pt1—S1—C7i124.3 (3)C2—C3—C4—C50.000 (2)
Cl1—Pt1—S1—C7i55.7 (3)C1—N1—C5—C40.000 (2)
N1—Pt1—S1—C7124.3 (3)Pt1—N1—C5—C4180.000 (2)
Cl1—Pt1—S1—C755.7 (3)C1—N1—C5—C6180.000 (2)
N1—Pt1—O1—C60.000 (2)Pt1—N1—C5—C60.000 (2)
Cl1—Pt1—O1—C6180.000 (2)C3—C4—C5—N10.000 (2)
O1—Pt1—N1—C50.000 (1)C3—C4—C5—C6180.000 (2)
S1—Pt1—N1—C5180.000 (1)Pt1—O1—C6—O2180.000 (2)
Cl1—Pt1—N1—C50.000 (4)Pt1—O1—C6—C50.000 (2)
O1—Pt1—N1—C1180.000 (1)N1—C5—C6—O2180.000 (2)
S1—Pt1—N1—C10.000 (1)C4—C5—C6—O20.000 (2)
Cl1—Pt1—N1—C1180.000 (3)N1—C5—C6—O10.000 (2)
C5—N1—C1—C20.000 (2)C4—C5—C6—O1180.000 (2)
Pt1—N1—C1—C2180.000 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.952.162.995 (11)145
C2—H2···O1ii0.952.353.255 (11)158
C7—H7A···O2iii0.982.423.323 (8)152
C7—H7B···Cl10.982.773.355 (7)119
Symmetry codes: (ii) x, y, z1; (iii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Pt(C6H4NO2)Cl(C2H6OS)]
Mr430.77
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)200
a, b, c (Å)19.5900 (15), 6.9450 (6), 8.1266 (6)
V3)1105.64 (15)
Z4
Radiation typeMo Kα
µ (mm1)13.11
Crystal size (mm)0.21 × 0.17 × 0.09
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.631, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6423, 1169, 1085
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.10
No. of reflections1169
No. of parameters89
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.60, 0.79

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—O12.020 (5)Pt1—S12.202 (2)
Pt1—N12.031 (7)Pt1—Cl12.2945 (19)
O1—Pt1—N181.0 (2)O1—Pt1—Cl188.98 (16)
O1—Pt1—S1177.70 (16)N1—Pt1—Cl1169.97 (19)
N1—Pt1—S1101.31 (19)S1—Pt1—Cl188.72 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O30.952.162.995 (11)145.3
C2—H2···O1i0.952.353.255 (11)158.0
C7—H7A···O2ii0.982.423.323 (8)152.2
C7—H7B···Cl10.982.773.355 (7)119.2
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+2.
 

Acknowledgements

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationAnnibale, G., Cattalini, L., Canovese, L., Pitteri, B., Tiripicchio, A., Tiripicchio Camellini, M. & Tobe, M. L. (1986). J. Chem. Soc. Dalton Trans. pp. 1101–1105.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGriffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956–961.  Web of Science CSD CrossRef Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds