metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(N,N-di­methyl­formamide-κO)cobalt(II) bis­­(perchlorate)

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany, and bInstitut für Physikalische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 21 January 2010; accepted 4 February 2010; online 10 February 2010)

The asymmetric unit of the title complex, [Co(DMF)6](ClO4)2 (DMF = N,N-dimethyl­formamide, C3H7NO), consists of two half complex cations with the Co2+ metal ions located on centers of inversion and two perchlorate anions. In the crystal packing, each Co2+ ion is coordinated by six mol­ecules of DMF in a slightly distorted octa­hedral geometry. The crystal structure is mainly stabilized by coordinative, ionic and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For the preparation and solution ligand-exchange experiments with [Co(DMF)6](ClO4)2, see: Schneider (1963[Schneider, W. (1963). Helv. Chim. Acta 46, 1842-1848.]); Matwiyoff (1966[Matwiyoff, N. A. (1966). Inorg. Chem. 5, 788-795.]); Babiec et al. (1966[Babiec, J. S. Jr, Langford, C. H. & Stengle, T. R. (1966). Inorg. Chem. 5, 1362-1364.]); Meyer et al. (1979[Meyer, F. K., Newman, K. E. & Merbach, A. E. (1979). Inorg. Chem. 18, 2142-2148.]); Męcik & Chudziak (1985[Męcik, M. & Chudziak, A. (1985). J. Solution Chem. 14, 653-669.]). For other structures containing the [Co(DMF)6]2+ complex cation, see: Jung et al. (1996[Jung, O.-S., Lee, Y.-A., Kim, K. W., Cho, Y. & Sohn, Y. S. (1996). Bull. Korean Chem. Soc. 17, 872-874.]); Khutornoi et al. (2002[Khutornoi, V. A., Naumov, N. G., Mironov, Y. U., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 183-190.]); Guo et al. (2004[Guo, Y., Wang, X., Li, Y., Wang, E., Xu, L. & Hu, C. (2004). J. Coord. Chem. 57, 445-451.]); Back et al. (2007[Back, D. F., de Oliveira, G. N. M., Burrow, R. A., Castellano, E. E., Abram, U. & Lang, E. S. (2007). Inorg. Chem. 46, 2356-2358.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C3H7NO)6](ClO4)2

  • Mr = 696.41

  • Monoclinic, P 21 /c

  • a = 14.7573 (3) Å

  • b = 10.7829 (2) Å

  • c = 20.7500 (4) Å

  • β = 92.265 (1)°

  • V = 3299.29 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 153 K

  • 0.60 × 0.47 × 0.47 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.688, Tmax = 0.747

  • 60939 measured reflections

  • 6120 independent reflections

  • 5193 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.10

  • 6120 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.44 3.004 (3) 118
C2—H2A⋯O1 0.98 2.39 2.796 (3) 104
C3—H3C⋯O14ii 0.98 2.37 3.340 (4) 168
C4—H4⋯O10iii 0.95 2.42 3.303 (3) 154
C5—H5A⋯O2 0.98 2.35 2.762 (3) 105
C5—H5B⋯O9iv 0.98 2.58 3.549 (4) 171
C8—H8A⋯O3 0.98 2.35 2.765 (3) 105
C11—H11A⋯O4 0.98 2.36 2.774 (3) 105
C12—H12C⋯O9v 0.98 2.59 3.397 (4) 140
C13—H13⋯O4 0.95 2.50 3.022 (3) 115
C14—H14A⋯O5 0.98 2.39 2.775 (3) 103
C15—H15A⋯O11 0.98 2.52 3.482 (4) 168
C15—H15C⋯O9 0.98 2.55 3.446 (4) 152
C17—H17C⋯O6 0.98 2.32 2.742 (3) 105
C18—H18A⋯O2v 0.98 2.45 3.371 (3) 156
Symmetry codes: (i) -x+2, -y, -z; (ii) x+1, y-1, z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The stability of the title DMF complex concerning ligand exchange in solution was determined under various conditions (Matwiyoff, 1966, Babiec et al., 1966, Meyer et al., 1979 and Męcik & Chudziak, 1985). As described in the literature, the title compound, [Co(DMF)6](ClO4)2, can be prepared as a solid via ligand exchange reaction by adding DMF to an aqueous solution of [Co(H2O)6](ClO4)2 (Schneider, 1963). However, an X-ray crystal structure describing the title compound cannot be found in the literature. Taking this into account, suitable crystals of [Co(DMF)6](ClO4)2 were prepared and the crystal structure is reported herein.

The asymmetric unit of the title compound consists of two independent half [Co(DMF)6]2+ complex cations and two independent perchlorate anions. Fig. 1 provides an illustration of the asymmetric unit with complete complex cations (produced via the symmetry operators -x+2, -y, -z for complex cation I and -x+1, -y+2, -z for complex cation II). The DMF molecules show a common structure and are coordinated to the Co2+ central ion via the carbonyl oxygen atom, respectively. Each Co2+ ion is coordinated by six DMF molecules leading to a slightly distorted octahedral complex geometry. The Co—O distances are 2.0687 (14) – 2.1044 (14) Å within complex cation I and 2.0693 (15) – 2.0898 (15) Å within complex cation II. The O—Co—O angles do not deviate significantly from 90° (±3.31° and ±2.69° within complex cations I and II, respectively). The geometrical parameters of the complex cations are in good agreement with the other published X-ray crystal structures containing the [Co(DMF)6]2+ cation where Co—O distances of 2.05 – 2.16 Å and O—Co—O angles of 90° ± 4° are reported (Jung et al., 1996, Khutornoi et al., 2002, Guo et al., 2004 and Back et al., 2007).

Besides the coordinative interactions between the metal ions and the DMF molecules, the crystal structure of [Co(DMF)6](ClO4)2 is stabilized by several hydrogen bonding interactions (Table 1). The DMF molecules show weak intramolecular (methyl)C—H···O contacts (C2—H2A···O1, C5—H5A···O2, C8—H8A···O3, C11—H11A···O4, C14—H14A···O5 and C17—H17C···O6, Fig. 2). The formyl hydrogens are involved either in weak intra-complex C—H···O interactions with a carbonyl oxygen of another DMF molecule (C1—H1···O2 and C13—H13···O4, Fig. 2) or stronger intermolecular C—H···O contacts to a perchlorate oxygen atom (C4—H4···O10). Furthermore, there are several intermolecular C—H···O contacts between DMF methyl groups and a carbonyl oxygen of a neighboring DMF molecule (C18—H18A···O2) or an oxygen atom of a perchlorate anion (C3—H3C···O14, C5—H5B···O9, C12—H12C···O9, C15—H15A···O11 and C15—H15C···O9). A packing illustration including intermolecular hydrogen bonding interactions is shown in Fig. 3.

Related literature top

For the preparation and solution ligand-exchange experiments with [Co(DMF)6](ClO4)2, see: Schneider (1963); Matwiyoff (1966); Babiec et al. (1966); Meyer et al. (1979); Męcik & Chudziak (1985). For other structures containing the [Co(DMF)6]2+ complex cation, see: Jung et al. (1996); Khutornoi et al. (2002); Guo et al. (2004); Back et al. (2007).

Experimental top

Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of 18.3 mg (0.05 mmol) of [Co(H2O)6](ClO4)2 in a mixture consisting of 10 ml of DMF and 10 ml of water.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms [(formyl)C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C); (methyl)C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 30 % probability displacement ellipsoids.
[Figure 2] Fig. 2. Intramolecular hydrogen bonding interactions (dashed lines) within the complex cations exemplified for complex cation I (Co1).
[Figure 3] Fig. 3. Packing illustration of the title compound viewed down the b axis with intermolecular hydrogen bonding interactions (dashed lines) - see Table 1 for details. Hydrogen atoms not involved in hydrogen bonding interactions have been omitted for clarity.
Hexakis(N,N-dimethylformamide-κO)cobalt(II) bis(perchlorate) top
Crystal data top
[Co(C3H7NO)6](ClO4)2F(000) = 1460
Mr = 696.41Dx = 1.402 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9823 reflections
a = 14.7573 (3) Åθ = 2.3–32.2°
b = 10.7829 (2) ŵ = 0.75 mm1
c = 20.7500 (4) ÅT = 153 K
β = 92.265 (1)°Prismatic, pink
V = 3299.29 (11) Å30.60 × 0.47 × 0.47 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6120 independent reflections
Radiation source: fine-focus sealed tube5193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.688, Tmax = 0.747k = 1313
60939 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.051P)2 + 2.6993P]
where P = (Fo2 + 2Fc2)/3
6120 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Co(C3H7NO)6](ClO4)2V = 3299.29 (11) Å3
Mr = 696.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7573 (3) ŵ = 0.75 mm1
b = 10.7829 (2) ÅT = 153 K
c = 20.7500 (4) Å0.60 × 0.47 × 0.47 mm
β = 92.265 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6120 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5193 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.747Rint = 0.024
60939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.10Δρmax = 0.69 e Å3
6120 reflectionsΔρmin = 0.69 e Å3
385 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.00000.02317 (11)
N11.06651 (12)0.03778 (17)0.19469 (8)0.0310 (4)
O11.04631 (10)0.03988 (14)0.09368 (7)0.0308 (3)
C11.05875 (14)0.0483 (2)0.13179 (10)0.0292 (4)
H11.06290.12910.11390.035*
C21.05863 (18)0.0810 (2)0.22680 (11)0.0412 (6)
H2A1.05230.14700.19440.062*
H2B1.11310.09590.25430.062*
H2C1.00520.08040.25340.062*
C31.0800 (2)0.1468 (2)0.23584 (12)0.0476 (6)
H3A1.08420.22100.20890.071*
H3B1.02870.15520.26410.071*
H3C1.13620.13720.26220.071*
N20.86908 (13)0.34263 (17)0.02245 (10)0.0375 (4)
O20.90923 (10)0.14613 (13)0.00095 (7)0.0308 (3)
C40.92738 (14)0.25119 (19)0.02278 (10)0.0303 (5)
H40.98670.26570.04060.036*
C50.77732 (17)0.3280 (3)0.00472 (14)0.0496 (7)
H5A0.77040.24480.02330.074*
H5B0.76590.39020.03850.074*
H5C0.73380.33900.02930.074*
C60.8932 (2)0.4643 (3)0.04839 (18)0.0613 (8)
H6A0.95660.46350.06440.092*
H6B0.85390.48430.08390.092*
H6C0.88540.52680.01440.092*
N30.78143 (12)0.23773 (16)0.05297 (8)0.0290 (4)
O30.90540 (10)0.11888 (14)0.04150 (7)0.0322 (3)
C70.83944 (14)0.17657 (18)0.01816 (10)0.0267 (4)
H70.83010.17680.02740.032*
C80.79149 (19)0.2412 (2)0.12291 (11)0.0443 (6)
H8A0.84550.19410.13700.066*
H8B0.79800.32740.13730.066*
H8C0.73780.20440.14160.066*
C90.70395 (15)0.3027 (2)0.02287 (13)0.0411 (6)
H9A0.64780.25970.03320.062*
H9B0.70220.38790.03920.062*
H9C0.70980.30410.02400.062*
Co20.50001.00000.00000.03060 (12)
N40.36520 (13)1.16530 (19)0.15122 (9)0.0373 (4)
O40.39957 (10)1.06505 (15)0.05968 (7)0.0356 (4)
C100.41810 (15)1.1412 (2)0.10339 (11)0.0337 (5)
H100.47401.18460.10200.040*
C110.27908 (17)1.1019 (3)0.15718 (13)0.0476 (6)
H11A0.26941.04450.12090.071*
H11B0.22991.16300.15680.071*
H11C0.27981.05550.19780.071*
C120.3916 (2)1.2536 (3)0.20153 (13)0.0536 (7)
H12A0.45001.29120.19170.080*
H12B0.39731.21070.24310.080*
H12C0.34541.31860.20370.080*
N50.42801 (12)0.68000 (17)0.09815 (8)0.0298 (4)
O50.46338 (11)0.82027 (15)0.02231 (7)0.0368 (4)
C130.44254 (15)0.7930 (2)0.07824 (10)0.0317 (5)
H130.43690.85870.10830.038*
C140.43813 (17)0.5739 (2)0.05585 (11)0.0370 (5)
H14A0.43800.60220.01100.056*
H14B0.38760.51630.06130.056*
H14C0.49550.53180.06680.056*
C150.40489 (19)0.6547 (2)0.16453 (11)0.0434 (6)
H15A0.40220.73280.18850.065*
H15B0.45120.60070.18490.065*
H15C0.34570.61340.16490.065*
N60.71229 (12)1.06214 (18)0.13840 (8)0.0325 (4)
O60.58778 (11)1.00263 (15)0.08052 (8)0.0382 (4)
C160.66818 (16)1.0371 (2)0.08409 (10)0.0314 (5)
H160.69931.04580.04510.038*
C170.66574 (19)1.0597 (3)0.19895 (11)0.0543 (7)
H17A0.65931.14450.21510.081*
H17B0.70101.01030.23070.081*
H17C0.60551.02260.19180.081*
C180.80593 (17)1.1038 (3)0.14129 (13)0.0461 (6)
H18A0.83281.08970.09950.069*
H18B0.84011.05730.17480.069*
H18C0.80811.19250.15160.069*
Cl10.14678 (4)0.44241 (6)0.15177 (3)0.04197 (16)
O70.15199 (19)0.4085 (3)0.21818 (11)0.0908 (9)
O80.1056 (2)0.5590 (2)0.14163 (16)0.0996 (10)
O90.23572 (16)0.4430 (3)0.12759 (14)0.0885 (8)
O100.09531 (19)0.3507 (2)0.11927 (14)0.0928 (9)
Cl20.35649 (4)0.93255 (6)0.32837 (3)0.04708 (17)
O110.3907 (3)0.9056 (3)0.26930 (13)0.156 (2)
O120.39639 (17)0.8536 (2)0.37650 (11)0.0723 (6)
O130.37860 (18)1.0582 (2)0.34240 (13)0.0775 (7)
O140.2614 (2)0.9285 (4)0.3290 (2)0.1486 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0272 (2)0.0197 (2)0.0226 (2)0.00095 (14)0.00004 (15)0.00067 (14)
N10.0349 (10)0.0314 (9)0.0264 (9)0.0034 (8)0.0020 (7)0.0017 (8)
O10.0399 (8)0.0264 (7)0.0255 (7)0.0027 (6)0.0048 (6)0.0003 (6)
C10.0323 (11)0.0261 (10)0.0289 (11)0.0025 (8)0.0031 (8)0.0008 (9)
C20.0532 (14)0.0402 (13)0.0307 (12)0.0063 (11)0.0068 (10)0.0060 (10)
C30.0638 (17)0.0439 (14)0.0345 (13)0.0007 (12)0.0049 (12)0.0111 (11)
N20.0332 (10)0.0276 (10)0.0513 (12)0.0070 (8)0.0047 (8)0.0014 (8)
O20.0335 (8)0.0277 (8)0.0309 (8)0.0041 (6)0.0012 (6)0.0021 (6)
C40.0293 (10)0.0286 (11)0.0328 (11)0.0046 (8)0.0015 (8)0.0009 (9)
C50.0352 (13)0.0448 (15)0.0680 (18)0.0099 (11)0.0094 (12)0.0059 (13)
C60.0535 (17)0.0330 (14)0.097 (2)0.0120 (12)0.0098 (16)0.0161 (15)
N30.0304 (9)0.0253 (9)0.0312 (9)0.0021 (7)0.0017 (7)0.0021 (7)
O30.0357 (8)0.0302 (8)0.0307 (8)0.0081 (6)0.0013 (6)0.0035 (6)
C70.0304 (10)0.0234 (10)0.0264 (10)0.0029 (8)0.0004 (8)0.0023 (8)
C80.0650 (16)0.0369 (13)0.0316 (12)0.0134 (12)0.0096 (11)0.0026 (10)
C90.0303 (11)0.0385 (13)0.0540 (15)0.0068 (10)0.0048 (10)0.0067 (11)
Co20.0356 (2)0.0338 (2)0.0227 (2)0.00034 (17)0.00509 (17)0.00289 (16)
N40.0373 (10)0.0446 (11)0.0301 (10)0.0081 (9)0.0041 (8)0.0006 (8)
O40.0371 (8)0.0389 (9)0.0314 (8)0.0012 (7)0.0080 (6)0.0006 (7)
C100.0342 (11)0.0343 (12)0.0328 (12)0.0047 (9)0.0046 (9)0.0055 (10)
C110.0375 (13)0.0657 (17)0.0404 (13)0.0057 (12)0.0120 (10)0.0057 (12)
C120.0589 (17)0.0621 (18)0.0396 (14)0.0146 (14)0.0001 (12)0.0141 (13)
N50.0364 (10)0.0321 (9)0.0215 (9)0.0018 (8)0.0070 (7)0.0012 (7)
O50.0490 (9)0.0368 (9)0.0251 (8)0.0045 (7)0.0083 (7)0.0018 (7)
C130.0369 (11)0.0334 (12)0.0252 (11)0.0003 (9)0.0052 (9)0.0034 (9)
C140.0470 (13)0.0337 (12)0.0303 (11)0.0087 (10)0.0009 (10)0.0047 (9)
C150.0613 (16)0.0424 (13)0.0275 (12)0.0021 (12)0.0151 (11)0.0034 (10)
N60.0365 (10)0.0399 (10)0.0216 (9)0.0062 (8)0.0053 (7)0.0022 (8)
O60.0390 (9)0.0482 (10)0.0274 (8)0.0003 (7)0.0017 (7)0.0043 (7)
C160.0424 (13)0.0287 (11)0.0235 (10)0.0049 (9)0.0083 (9)0.0011 (8)
C170.0557 (16)0.085 (2)0.0223 (12)0.0115 (15)0.0084 (11)0.0005 (13)
C180.0455 (14)0.0509 (15)0.0419 (14)0.0054 (12)0.0021 (11)0.0067 (12)
Cl10.0382 (3)0.0419 (3)0.0459 (3)0.0083 (2)0.0034 (2)0.0112 (3)
O70.0932 (19)0.137 (3)0.0429 (12)0.0217 (17)0.0042 (12)0.0066 (14)
O80.113 (2)0.0451 (13)0.144 (3)0.0159 (14)0.052 (2)0.0069 (15)
O90.0543 (13)0.110 (2)0.103 (2)0.0148 (14)0.0320 (13)0.0371 (17)
O100.105 (2)0.0667 (15)0.102 (2)0.0213 (14)0.0574 (16)0.0075 (14)
Cl20.0476 (4)0.0455 (4)0.0473 (4)0.0024 (3)0.0087 (3)0.0001 (3)
O110.292 (5)0.127 (3)0.0473 (15)0.129 (3)0.002 (2)0.0140 (16)
O120.0817 (16)0.0671 (14)0.0667 (14)0.0078 (12)0.0136 (12)0.0183 (11)
O130.0828 (17)0.0548 (14)0.0942 (18)0.0091 (12)0.0049 (14)0.0084 (13)
O140.0579 (17)0.150 (3)0.233 (5)0.0344 (19)0.047 (2)0.057 (3)
Geometric parameters (Å, º) top
Co1—O2i2.0687 (14)Co2—O42.0898 (15)
Co1—O22.0687 (14)Co2—O4ii2.0898 (15)
Co1—O12.0799 (14)N4—C101.313 (3)
Co1—O1i2.0799 (14)N4—C111.452 (3)
Co1—O32.1044 (14)N4—C121.455 (3)
Co1—O3i2.1044 (14)O4—C101.246 (3)
N1—C11.311 (3)C10—H100.9500
N1—C21.451 (3)C11—H11A0.9800
N1—C31.462 (3)C11—H11B0.9800
O1—C11.246 (3)C11—H11C0.9800
C1—H10.9500C12—H12A0.9800
C2—H2A0.9800C12—H12B0.9800
C2—H2B0.9800C12—H12C0.9800
C2—H2C0.9800N5—C131.307 (3)
C3—H3A0.9800N5—C141.453 (3)
C3—H3B0.9800N5—C151.458 (3)
C3—H3C0.9800O5—C131.247 (3)
N2—C41.308 (3)C13—H130.9500
N2—C51.455 (3)C14—H14A0.9800
N2—C61.457 (3)C14—H14B0.9800
O2—C41.245 (3)C14—H14C0.9800
C4—H40.9500C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800N6—C161.307 (3)
C6—H6A0.9800N6—C181.452 (3)
C6—H6B0.9800N6—C171.456 (3)
C6—H6C0.9800O6—C161.243 (3)
N3—C71.318 (3)C16—H160.9500
N3—C81.454 (3)C17—H17A0.9800
N3—C91.460 (3)C17—H17B0.9800
O3—C71.238 (2)C17—H17C0.9800
C7—H70.9500C18—H18A0.9800
C8—H8A0.9800C18—H18B0.9800
C8—H8B0.9800C18—H18C0.9800
C8—H8C0.9800Cl1—O101.403 (2)
C9—H9A0.9800Cl1—O81.409 (3)
C9—H9B0.9800Cl1—O91.424 (2)
C9—H9C0.9800Cl1—O71.425 (2)
Co2—O5ii2.0693 (15)Cl2—O111.375 (3)
Co2—O52.0693 (15)Cl2—O141.405 (3)
Co2—O6ii2.0734 (16)Cl2—O131.421 (3)
Co2—O62.0734 (16)Cl2—O121.422 (2)
O2i—Co1—O2180.00 (10)O5ii—Co2—O490.90 (6)
O2i—Co1—O188.71 (6)O5—Co2—O489.10 (6)
O2—Co1—O191.29 (6)O6ii—Co2—O492.69 (6)
O2i—Co1—O1i91.29 (6)O6—Co2—O487.31 (6)
O2—Co1—O1i88.71 (6)O5ii—Co2—O4ii89.10 (6)
O1—Co1—O1i180.00 (3)O5—Co2—O4ii90.90 (6)
O2i—Co1—O388.86 (6)O6ii—Co2—O4ii87.31 (6)
O2—Co1—O391.14 (6)O6—Co2—O4ii92.69 (6)
O1—Co1—O386.69 (6)O4—Co2—O4ii180.00 (7)
O1i—Co1—O393.31 (6)C10—N4—C11121.3 (2)
O2i—Co1—O3i91.14 (6)C10—N4—C12121.4 (2)
O2—Co1—O3i88.86 (6)C11—N4—C12117.2 (2)
O1—Co1—O3i93.31 (6)C10—O4—Co2120.82 (14)
O1i—Co1—O3i86.69 (6)O4—C10—N4124.1 (2)
O3—Co1—O3i180.00 (11)O4—C10—H10117.9
C1—N1—C2121.89 (19)N4—C10—H10117.9
C1—N1—C3121.1 (2)N4—C11—H11A109.5
C2—N1—C3116.96 (19)N4—C11—H11B109.5
C1—O1—Co1118.05 (14)H11A—C11—H11B109.5
O1—C1—N1124.8 (2)N4—C11—H11C109.5
O1—C1—H1117.6H11A—C11—H11C109.5
N1—C1—H1117.6H11B—C11—H11C109.5
N1—C2—H2A109.5N4—C12—H12A109.5
N1—C2—H2B109.5N4—C12—H12B109.5
H2A—C2—H2B109.5H12A—C12—H12B109.5
N1—C2—H2C109.5N4—C12—H12C109.5
H2A—C2—H2C109.5H12A—C12—H12C109.5
H2B—C2—H2C109.5H12B—C12—H12C109.5
N1—C3—H3A109.5C13—N5—C14121.39 (18)
N1—C3—H3B109.5C13—N5—C15121.39 (18)
H3A—C3—H3B109.5C14—N5—C15117.17 (18)
N1—C3—H3C109.5C13—O5—Co2120.33 (14)
H3A—C3—H3C109.5O5—C13—N5124.3 (2)
H3B—C3—H3C109.5O5—C13—H13117.9
C4—N2—C5121.5 (2)N5—C13—H13117.9
C4—N2—C6121.7 (2)N5—C14—H14A109.5
C5—N2—C6116.8 (2)N5—C14—H14B109.5
C4—O2—Co1124.50 (13)H14A—C14—H14B109.5
O2—C4—N2123.5 (2)N5—C14—H14C109.5
O2—C4—H4118.3H14A—C14—H14C109.5
N2—C4—H4118.3H14B—C14—H14C109.5
N2—C5—H5A109.5N5—C15—H15A109.5
N2—C5—H5B109.5N5—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
N2—C5—H5C109.5N5—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
N2—C6—H6A109.5C16—N6—C18122.69 (19)
N2—C6—H6B109.5C16—N6—C17120.3 (2)
H6A—C6—H6B109.5C18—N6—C17116.8 (2)
N2—C6—H6C109.5C16—O6—Co2128.08 (14)
H6A—C6—H6C109.5O6—C16—N6123.7 (2)
H6B—C6—H6C109.5O6—C16—H16118.1
C7—N3—C8121.13 (19)N6—C16—H16118.1
C7—N3—C9121.35 (19)N6—C17—H17A109.5
C8—N3—C9117.52 (18)N6—C17—H17B109.5
C7—O3—Co1132.08 (14)H17A—C17—H17B109.5
O3—C7—N3123.68 (19)N6—C17—H17C109.5
O3—C7—H7118.2H17A—C17—H17C109.5
N3—C7—H7118.2H17B—C17—H17C109.5
N3—C8—H8A109.5N6—C18—H18A109.5
N3—C8—H8B109.5N6—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
N3—C8—H8C109.5N6—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N3—C9—H9A109.5O10—Cl1—O8109.58 (19)
N3—C9—H9B109.5O10—Cl1—O9108.8 (2)
H9A—C9—H9B109.5O8—Cl1—O9109.95 (17)
N3—C9—H9C109.5O10—Cl1—O7106.94 (18)
H9A—C9—H9C109.5O8—Cl1—O7112.35 (19)
H9B—C9—H9C109.5O9—Cl1—O7109.08 (17)
O5ii—Co2—O5180.0O11—Cl2—O14113.8 (3)
O5ii—Co2—O6ii89.59 (6)O11—Cl2—O13107.2 (2)
O5—Co2—O6ii90.41 (6)O14—Cl2—O13104.4 (2)
O5ii—Co2—O690.41 (6)O11—Cl2—O12110.06 (17)
O5—Co2—O689.59 (6)O14—Cl2—O12111.2 (2)
O6ii—Co2—O6180.00 (9)O13—Cl2—O12110.00 (15)
O2i—Co1—O1—C143.12 (16)O5ii—Co2—O4—C1053.21 (17)
O2—Co1—O1—C1136.88 (16)O5—Co2—O4—C10126.79 (17)
O3—Co1—O1—C145.82 (16)O6ii—Co2—O4—C10142.84 (16)
O3i—Co1—O1—C1134.18 (16)O6—Co2—O4—C1037.16 (16)
Co1—O1—C1—N1162.96 (17)Co2—O4—C10—N4164.16 (17)
C2—N1—C1—O11.7 (3)C11—N4—C10—O40.7 (3)
C3—N1—C1—O1179.3 (2)C12—N4—C10—O4178.8 (2)
O1—Co1—O2—C443.38 (17)O6ii—Co2—O5—C13131.66 (17)
O1i—Co1—O2—C4136.62 (17)O6—Co2—O5—C1348.34 (17)
O3—Co1—O2—C4130.09 (17)O4—Co2—O5—C1338.97 (17)
O3i—Co1—O2—C449.91 (17)O4ii—Co2—O5—C13141.03 (17)
Co1—O2—C4—N2179.46 (16)Co2—O5—C13—N5172.41 (17)
C5—N2—C4—O20.7 (4)C14—N5—C13—O52.0 (3)
C6—N2—C4—O2179.9 (2)C15—N5—C13—O5179.3 (2)
O2i—Co1—O3—C799.80 (19)O5ii—Co2—O6—C1647.83 (19)
O2—Co1—O3—C780.20 (19)O5—Co2—O6—C16132.17 (19)
O1—Co1—O3—C7171.43 (19)O4—Co2—O6—C16138.72 (19)
O1i—Co1—O3—C78.57 (19)O4ii—Co2—O6—C1641.28 (19)
Co1—O3—C7—N3172.81 (14)Co2—O6—C16—N6163.94 (16)
C8—N3—C7—O30.1 (3)C18—N6—C16—O6179.2 (2)
C9—N3—C7—O3179.1 (2)C17—N6—C16—O64.8 (4)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.443.004 (3)118
C2—H2A···O10.982.392.796 (3)104
C3—H3C···O14iii0.982.373.340 (4)168
C4—H4···O10iv0.952.423.303 (3)154
C5—H5A···O20.982.352.762 (3)105
C5—H5B···O9v0.982.583.549 (4)171
C8—H8A···O30.982.352.765 (3)105
C11—H11A···O40.982.362.774 (3)105
C12—H12C···O9vi0.982.593.397 (4)140
C13—H13···O40.952.503.022 (3)115
C14—H14A···O50.982.392.775 (3)103
C15—H15A···O110.982.523.482 (4)168
C15—H15C···O90.982.553.446 (4)152
C17—H17C···O60.982.322.742 (3)105
C18—H18A···O2vi0.982.453.371 (3)156
Symmetry codes: (i) x+2, y, z; (iii) x+1, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C3H7NO)6](ClO4)2
Mr696.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)14.7573 (3), 10.7829 (2), 20.7500 (4)
β (°) 92.265 (1)
V3)3299.29 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.60 × 0.47 × 0.47
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.688, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
60939, 6120, 5193
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.10
No. of reflections6120
No. of parameters385
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.443.004 (3)118
C2—H2A···O10.982.392.796 (3)104
C3—H3C···O14ii0.982.373.340 (4)168
C4—H4···O10iii0.952.423.303 (3)154
C5—H5A···O20.982.352.762 (3)105
C5—H5B···O9iv0.982.583.549 (4)171
C8—H8A···O30.982.352.765 (3)105
C11—H11A···O40.982.362.774 (3)105
C12—H12C···O9v0.982.593.397 (4)140
C13—H13···O40.952.503.022 (3)115
C14—H14A···O50.982.392.775 (3)103
C15—H15A···O110.982.523.482 (4)168
C15—H15C···O90.982.553.446 (4)152
C17—H17C···O60.982.322.742 (3)105
C18—H18A···O2v0.982.453.371 (3)156
Symmetry codes: (i) x+2, y, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.
 

References

First citationBabiec, J. S. Jr, Langford, C. H. & Stengle, T. R. (1966). Inorg. Chem. 5, 1362–1364.  CrossRef CAS Web of Science Google Scholar
First citationBack, D. F., de Oliveira, G. N. M., Burrow, R. A., Castellano, E. E., Abram, U. & Lang, E. S. (2007). Inorg. Chem. 46, 2356–2358.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuo, Y., Wang, X., Li, Y., Wang, E., Xu, L. & Hu, C. (2004). J. Coord. Chem. 57, 445–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, O.-S., Lee, Y.-A., Kim, K. W., Cho, Y. & Sohn, Y. S. (1996). Bull. Korean Chem. Soc. 17, 872–874.  CAS Google Scholar
First citationKhutornoi, V. A., Naumov, N. G., Mironov, Y. U., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 183–190.  Web of Science CrossRef CAS Google Scholar
First citationMatwiyoff, N. A. (1966). Inorg. Chem. 5, 788–795.  CrossRef CAS Web of Science Google Scholar
First citationMęcik, M. & Chudziak, A. (1985). J. Solution Chem. 14, 653–669.  Google Scholar
First citationMeyer, F. K., Newman, K. E. & Merbach, A. E. (1979). Inorg. Chem. 18, 2142–2148.  CrossRef CAS Web of Science Google Scholar
First citationSchneider, W. (1963). Helv. Chim. Acta 46, 1842–1848.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds