organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,5-Di­bromo-2-hy­droxy­benzyl­­idene)nicotinohydrazide

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People's Republic of China
*Correspondence e-mail: yongqing_su@163.com

(Received 11 February 2010; accepted 17 February 2010; online 20 February 2010)

In the title Schiff base compound, C13H9Br2N3O2, there is an intra­molecular O-H⋯N hydrogen bond involving the hydroxyl substituent and the adjacent hydrazine N atom. The mol­ecule is almost planar, the dihedral angle between the benzene ring and the pyridine ring being 5.7 (2)°. In the crystal structure, symmetry-related mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains propagating in [001].

Related literature

For related literature on Schiff bases, see: Archibald et al. (1994[Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669-1670.]); Harada et al. (1999[Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809-5810.]); Ogawa et al. (1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]). For similar structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Li et al. (2010[Li, C., Wang, P. & Su, Y.-Q. (2010). Acta Cryst. E66, o520.]); Sun et al. (2009[Sun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.]); Wang et al. (2010[Wang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.]); Wen et al. (2009[Wen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Br2N3O2

  • Mr = 399.05

  • Monoclinic, P 21 /c

  • a = 17.013 (4) Å

  • b = 8.091 (2) Å

  • c = 10.153 (3) Å

  • β = 92.194 (13)°

  • V = 1396.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.81 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.349, Tmax = 0.390

  • 8024 measured reflections

  • 3023 independent reflections

  • 1933 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.00

  • 3023 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.89 2.609 (4) 146
N2—H2⋯O2i 0.91 (2) 2.14 (2) 3.017 (4) 162 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999). Recently, we reported on the crystal structures of two new Schiff bases (Li et al., 2010; Wang et al., 2010). As a further investigation of the structures of Schiff base compounds the title compound was prepared by the reaction of 3,5-dibromo-2-hydroxybenzaldehyde with nicotinic acid hydrazide in methanol; its crystal structure is reported on here.

In the title compound (Fig. 1), there is an intramolecular O-H···N hydrogen bond involving the hydroxyl substituent and the adjacent hydrazine N-atom, N2 (Table 1). The benzene ring is inclined to the pyridine ring by 5.7 (2)°. All the bond lengths are comparable with those observed in similar Schiff bases reported on previously (Wen et al., 2009; Mohd Lair et al., 2009; Sun et al., 2009).

In the crystal structure, symmetry related molecules are linked via intermolecular N—H···O hydrogen bonds so forming chains running along the c axis (Table 1, Fig. 2).

Related literature top

For related literature on Schiff bases, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For similar structures, see: Mohd Lair et al. (2009); Li et al. (2010); Sun et al. (2009); Wang et al. (2010); Wen et al. (2009).

Experimental top

3,5-Dibromo-2-hydroxybenzaldehyde (1.0 mmol, 280 mg) and nicotinic acid hydrazide (1.0 mmol, 137 mg) were dissolved in methanol (30 mL). The mixture was stirred at room temperature for about 1 h to give a colorless solution. After allowing the solution to evaporate slowly in air for 8 days, colorless block-like crystals, suitable for X-ray analysis, were formed.

Refinement top

Atom H2 was located in a difference Fourier map and refined with a N—H distance restraint of 0.90 (1) Å and Uiso(H) = 0.08. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, C—H = 0.93 Å, with Uiso(H) = k × Ueq(parent atom), where k = 1.2 for C-bound H-atoms and = 1.5 for the hydroxyl H-atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O-H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b-axis. The intra- and intermolecular hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-N'-(3,5-Dibromo-2-hydroxybenzylidene)nicotinohydrazide top
Crystal data top
C13H9Br2N3O2F(000) = 776
Mr = 399.05Dx = 1.898 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2084 reflections
a = 17.013 (4) Åθ = 2.4–25.2°
b = 8.091 (2) ŵ = 5.81 mm1
c = 10.153 (3) ÅT = 298 K
β = 92.194 (13)°Block, colourless
V = 1396.6 (6) Å30.23 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3023 independent reflections
Radiation source: fine-focus sealed tube1933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1921
Tmin = 0.349, Tmax = 0.390k = 1010
8024 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
3023 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.69 e Å3
Crystal data top
C13H9Br2N3O2V = 1396.6 (6) Å3
Mr = 399.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.013 (4) ŵ = 5.81 mm1
b = 8.091 (2) ÅT = 298 K
c = 10.153 (3) Å0.23 × 0.21 × 0.20 mm
β = 92.194 (13)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1933 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.390Rint = 0.036
8024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.64 e Å3
3023 reflectionsΔρmin = 0.69 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38611 (2)1.15620 (7)0.38681 (5)0.0731 (2)
Br20.44353 (2)0.85756 (6)0.88313 (4)0.06341 (18)
N10.11733 (17)0.8462 (3)0.5380 (3)0.0393 (7)
N20.04257 (16)0.7852 (4)0.5483 (3)0.0402 (7)
N30.16645 (18)0.5160 (4)0.5780 (3)0.0501 (8)
O10.22622 (14)1.0061 (3)0.4163 (2)0.0514 (7)
H10.18200.96960.42700.077*
O20.01730 (14)0.8169 (3)0.3293 (2)0.0508 (7)
C10.2459 (2)0.8814 (4)0.6310 (3)0.0383 (8)
C20.27257 (19)0.9725 (4)0.5231 (3)0.0377 (8)
C30.3494 (2)1.0292 (4)0.5283 (3)0.0437 (9)
C40.4001 (2)0.9964 (4)0.6347 (3)0.0455 (9)
H40.45121.03740.63730.055*
C50.3737 (2)0.9026 (4)0.7363 (3)0.0403 (8)
C60.2980 (2)0.8450 (4)0.7371 (3)0.0430 (9)
H60.28130.78230.80760.052*
C70.1655 (2)0.8224 (4)0.6360 (3)0.0396 (8)
H70.14900.76730.71040.048*
C80.00388 (19)0.7712 (4)0.4372 (3)0.0366 (8)
C90.08166 (19)0.6936 (4)0.4557 (3)0.0358 (8)
C100.1424 (2)0.7215 (5)0.3642 (4)0.0492 (9)
H100.13470.78890.29170.059*
C110.2145 (2)0.6488 (5)0.3811 (4)0.0541 (11)
H110.25610.66660.32070.065*
C120.2236 (2)0.5493 (5)0.4894 (4)0.0510 (10)
H120.27270.50250.50110.061*
C130.0972 (2)0.5869 (4)0.5595 (3)0.0417 (9)
H130.05630.56370.62000.050*
H20.024 (2)0.764 (6)0.629 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0414 (3)0.1045 (4)0.0730 (3)0.0128 (2)0.0014 (2)0.0354 (3)
Br20.0494 (3)0.0779 (3)0.0609 (3)0.0041 (2)0.0244 (2)0.0057 (2)
N10.0304 (16)0.0528 (18)0.0347 (16)0.0058 (13)0.0011 (12)0.0056 (13)
N20.0285 (16)0.0596 (19)0.0324 (16)0.0048 (14)0.0016 (12)0.0034 (14)
N30.0425 (19)0.057 (2)0.0510 (19)0.0091 (15)0.0009 (15)0.0027 (15)
O10.0355 (15)0.079 (2)0.0393 (14)0.0054 (13)0.0059 (11)0.0100 (13)
O20.0404 (15)0.082 (2)0.0301 (14)0.0050 (13)0.0007 (11)0.0079 (13)
C10.0308 (19)0.044 (2)0.040 (2)0.0013 (15)0.0025 (15)0.0067 (16)
C20.0319 (19)0.047 (2)0.0344 (18)0.0030 (15)0.0022 (14)0.0012 (16)
C30.035 (2)0.051 (2)0.045 (2)0.0012 (16)0.0013 (16)0.0044 (17)
C40.030 (2)0.051 (2)0.055 (2)0.0002 (17)0.0051 (17)0.0015 (19)
C50.036 (2)0.044 (2)0.041 (2)0.0035 (16)0.0078 (15)0.0012 (17)
C60.043 (2)0.047 (2)0.039 (2)0.0002 (17)0.0033 (16)0.0008 (16)
C70.037 (2)0.044 (2)0.037 (2)0.0012 (15)0.0033 (16)0.0010 (15)
C80.0315 (19)0.043 (2)0.0347 (19)0.0033 (15)0.0029 (15)0.0034 (16)
C90.0322 (19)0.043 (2)0.0318 (18)0.0028 (15)0.0015 (14)0.0087 (15)
C100.042 (2)0.066 (3)0.038 (2)0.0023 (19)0.0067 (17)0.0071 (19)
C110.034 (2)0.077 (3)0.050 (2)0.0003 (19)0.0100 (17)0.011 (2)
C120.037 (2)0.056 (2)0.061 (3)0.0079 (18)0.0017 (18)0.012 (2)
C130.038 (2)0.047 (2)0.039 (2)0.0013 (17)0.0042 (16)0.0019 (16)
Geometric parameters (Å, º) top
Br1—C31.892 (4)C3—C41.382 (4)
Br2—C51.905 (3)C4—C51.370 (5)
N1—C71.278 (4)C4—H40.9300
N1—N21.372 (4)C5—C61.371 (5)
N2—C81.357 (4)C6—H60.9300
N2—H20.901 (10)C7—H70.9300
N3—C121.326 (4)C8—C91.483 (5)
N3—C131.330 (4)C9—C101.381 (5)
O1—C21.344 (4)C9—C131.396 (5)
O1—H10.8200C10—C111.377 (5)
O2—C81.223 (4)C10—H100.9300
C1—C61.401 (5)C11—C121.376 (5)
C1—C21.409 (5)C11—H110.9300
C1—C71.452 (5)C12—H120.9300
C2—C31.384 (5)C13—H130.9300
C7—N1—N2117.1 (3)C1—C6—H6120.3
C8—N2—N1118.6 (3)N1—C7—C1120.0 (3)
C8—N2—H2122 (3)N1—C7—H7120.0
N1—N2—H2119 (3)C1—C7—H7120.0
C12—N3—C13116.5 (3)O2—C8—N2122.5 (3)
C2—O1—H1109.5O2—C8—C9122.4 (3)
C6—C1—C2119.6 (3)N2—C8—C9115.1 (3)
C6—C1—C7118.3 (3)C10—C9—C13116.7 (3)
C2—C1—C7122.1 (3)C10—C9—C8119.6 (3)
O1—C2—C3119.2 (3)C13—C9—C8123.6 (3)
O1—C2—C1122.4 (3)C11—C10—C9119.6 (4)
C3—C2—C1118.4 (3)C11—C10—H10120.2
C4—C3—C2121.7 (3)C9—C10—H10120.2
C4—C3—Br1118.9 (3)C12—C11—C10118.5 (4)
C2—C3—Br1119.4 (3)C12—C11—H11120.8
C5—C4—C3118.9 (3)C10—C11—H11120.8
C5—C4—H4120.6N3—C12—C11124.0 (4)
C3—C4—H4120.6N3—C12—H12118.0
C4—C5—C6121.9 (3)C11—C12—H12118.0
C4—C5—Br2118.9 (3)N3—C13—C9124.6 (3)
C6—C5—Br2119.2 (3)N3—C13—H13117.7
C5—C6—C1119.4 (3)C9—C13—H13117.7
C5—C6—H6120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.609 (4)146
N2—H2···O2i0.91 (2)2.14 (2)3.017 (4)162 (3)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9Br2N3O2
Mr399.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.013 (4), 8.091 (2), 10.153 (3)
β (°) 92.194 (13)
V3)1396.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.81
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.349, 0.390
No. of measured, independent and
observed [I > 2σ(I)] reflections
8024, 3023, 1933
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.00
No. of reflections3023
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.69

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.892.609 (4)146
N2—H2···O2i0.91 (2)2.14 (2)3.017 (4)162 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors would like to acknowledge the support provided by the Yunnan Province Science and Technology Department, the Program of Yunnan Province's Young-middle aged Reserve Scientific and Technological Principal Culture Plan (grant No. 2006PY01–50) and the fund of Yunnan Province's Applied Research Plan (grant No. 2006E0032M).

References

First citationArchibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670.  CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C., Wang, P. & Su, Y.-Q. (2010). Acta Cryst. E66, o520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds