organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o680-o681

2-Ethyl-6-(2-pyrid­yl)-5,6,6a,11b-tetra­hydro-7H-indeno[2,1-c]quinoline

aLaboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Apartado 678, Bucaramanga, Colombia, and bCentro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: abriceno@ivic.ve

(Received 12 January 2010; accepted 11 February 2010; online 20 February 2010)

The title compound, C23H22N2, was obtained using the three-component imino Diels–Alder reaction via a one-pot condensation between anilines, α-pyridine­carboxy­aldehyde and indene using BF3·OEt2 as the catalyst. The mol­ecular structure reveals the cis-form as the unique diastereoisomer. The crystal structure comprises one-dimensional zigzag ribbons connected via N—H⋯N hydrogen bonds. C—H⋯π inter­actions also occur.

Related literature

For background to polycyclic quinoline derivatives, see: Denny & Baguley (2003[Denny, W. A. & Baguley, B. C. (2003). Curr. Top. Med. Chem. 3, 339-353.]); Gelderblom & Sparreboom (2006[Gelderblom, H. & Sparreboom, A. (2006). In Drugs Affecting of Tumours, edited by H. M. Pinedo & C. H. Smorenburg, pp. 83-100. Switzerland: Birkhuser Vergal.]). For the biological activity of quinolines, see: Ewesuedo et al. (2001[Ewesuedo, R. B., Iyer, L., Das, S., Koenig, A., Mani, S., Vogelzang, N. J., Schilsky, R. L., Brenckman, W. & Ratain, M. J. (2001). J. Clin. Oncol. 19, 2084-2090.]); Ishida & Asao (2002[Ishida, K. & Asao, T. (2002). Biochim. Biophys. Acta, 1587, 155-163.]); Kouznetsov et al. (2006[Kouznetsov, V. V., Ochoa Puentes, C., Zachinno, S. A., Gupta, M., Romero, B. A. R., Sortino, M., Vásquez, Y., Bahsas, A. & Amaro-Luis, J. (2006). Lett. Org. Chem. 3, 300-304.]); Li et al. (2006[Li, Q.-Y., Zu, Y.-G., Shi, R.-Z. & Yao, L.-P. (2006). Curr. Med. Chem. 13, 2021-2039.]); Ohyama et al. (1999[Ohyama, T., Li, Y., Utsugi, T., Irie, S., Yamada, Y. & Sato, T. (1999). Jpn J. Cancer Res. 44, 691-698.]); Priel et al. (1991[Priel, E., Showalter, S. D., Roberts, M., Oroszlan, S. & Blair, D. G. (1991). J. Virol. 65, 4137-4141.]); Twelves et al. (1999[Twelves, C. J., Gardner, C., Flavin, A., Sludden, J., Dennis, I., de Bono, J., Beale, P., Vasey, P., Hutchison, C., Macham, M. A., Rodríguez, A., Judson, I. & Bleehen, N. M. (1999). Br. J. Cancer, 80, 1786-1791.]); Martínez & Chacón-García (2005[Martínez, R. & Chacón-García, L. (2005). Curr. Med. Chem. 12, 127-151.]); Pommier (2006[Pommier, Y. (2006). Nat. Rev. Cancer, 6, 789-802.]).

[Scheme 1]

Experimental

Crystal data
  • C23H22N2

  • Mr = 326.43

  • Monoclinic, P 21 /c

  • a = 13.241 (4) Å

  • b = 15.801 (4) Å

  • c = 8.789 (2) Å

  • β = 101.168 (6)°

  • V = 1804.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Rigaku AFC7S Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.971, Tmax = 0.981

  • 20284 measured reflections

  • 3688 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.044

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.157

  • S = 1.07

  • 3688 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.87 2.53 3.345 (2) 157
C20—H20⋯N1 0.93 2.51 2.825 (3) 100
C14—H14⋯Cg4ii 0.93 2.74 3.611 (2) 153
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Within the quinoline family, polycyclic analogues are the most relevant compounds due to their broad potential as antitumoral agents (Gelderblom & Sparreboom, 2006; Denny & Baguley, 2003). Since the discovery of camptothecin, a natural topopisomerase (topo) I inhibitor (Pommier, 2006; Priel et al., 1991), a constant search for new compounds with the ability for inhibit the topoisomerases I/II enzymes has been undertaken (Li et al., 2006; Martínez & Chacón-García, 2005). The compound (6-[2-(dimethylamino)ethylamino]-3-hydroxy-7H-indeno[2,1-c] quinolin-7-one dihydrochloride (known as TAS-103) presents potent cytotoxicity in different leukemia lines (Twelves et al., 1999; Ohyama et al., 1999). The exhibited anti-cancer activity is due to its ability to function as a dual inhibitor of both topo I/II, and it has been investigated in clinical studies in recent years (Ewesuedo et al., 2001; Ishida & Asao, 2002).

In our preliminary studies of TAS-103 analogues, we have developed the synthesis (using the imino Diels Alder reaction) and studied the biological activity of the 6-α-pyridinyl- tetrahydro)indeno[2,1-c]quinolines (Kouznetsov et al., 2006). It was found that these compounds were active against MCF-7, H-460 and SF-268 cancer cell lines making them potential anti-cancer agents (Kouznetsov et al., 2006).

In order to obtain detailed information on its molecular conformation and the stereochemistry of the reaction, in this contribution, the molecular structure of the title compound, (I), is described. The structural analysis indicated (I) exists in the cis-form as a unique regio- and diastereo-isomer (Fig. 1). The tetrahydropyridine ring adopts a half-chair conformation and the indene ring displays an envelope configuration. The crystal packing of (I) consists of one-dimensional zigzag ribbons that run along the c direction and linked via N—H···N hydrogen bonding interactions (Fig. 2 & Table 1).

Related literature top

For background to polycyclic quinoline derivatives, see: Denny & Baguley (2003); Gelderblom & Sparreboom (2006). For the biological activity of quinolines, see: Ewesuedo et al. (2001); Ishida & Asao (2002); Kouznetsov et al. (2006); Li et al. (2006); Ohyama et al. (1999); Priel et al. (1991); Twelves et al. (1999); Martínez & Chacón-García (2005); Pommier (2006).

Experimental top

A mixture of aryl amine (3.6 mmol) and α-pyridinecarboxyaldehyde (4.0 mmol) in anhydrous CH3CN (15 ml) was stirred at room temperature for 30 min after which BF3.OEt2 (3.6 mmol) was added. Over a period of 20 min, an acetonitrile solution (10 ml) of indene (4.0 mmol) was added dropwise. The resulting mixture was stirred at 343 K for 5 h. After completion of the reaction, as indicated by TLC, the reaction mixture was diluted with water (30 ml) and extracted with ethyl acetate (3 x 15 ml). The organic layer was separated and dried (Na2SO4), concentrated in vacuo, and the resulting product was purified by column chromatography (silica gel, petroleum ether: EtOAc) to afford pure (I) as a colorless solid, mp 424–425 K (yield 43%). This compound was recrystallized by slow evaporation from the solvent mixture, hexane-ethyl acetate.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (aromatic) and 0.96 Å (methyl), and with Uiso(H) = 1.5 (1.2 for aromatic-H atoms) times Ueq(C). The low completeness ratio is due to the experimental setup whereby the equipment has a χ circle and an added area detector (four-circle diffractometer modified with a CCD). This precludes the collection of some regions of reciprocal lattice space and lowers the completeness. In order to compensate, additional redundant data were measured.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. View of a one-dimensional ribbon aligned along the c axis, generated by N—H···N hydrogen bonds. Intermolecular hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Ethyl-6-(2-pyridyl)-5,6,6a,11b-tetrahydro-7H -indeno[2,1-c]quinoline top
Crystal data top
C23H22N2F(000) = 696
Mr = 326.43Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11041 reflections
a = 13.241 (4) Åθ = 1.6–27.7°
b = 15.801 (4) ŵ = 0.07 mm1
c = 8.789 (2) ÅT = 293 K
β = 101.168 (6)°Block, yellow
V = 1804.0 (8) Å30.30 × 0.28 × 0.26 mm
Z = 4
Data collection top
Rigaku AFC7S Mercury
diffractometer
3688 independent reflections
Radiation source: Normal-focus sealed tube2420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1515
Tmin = 0.971, Tmax = 0.981k = 1820
20284 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.2578P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H22N2V = 1804.0 (8) Å3
Mr = 326.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.241 (4) ŵ = 0.07 mm1
b = 15.801 (4) ÅT = 293 K
c = 8.789 (2) Å0.30 × 0.28 × 0.26 mm
β = 101.168 (6)°
Data collection top
Rigaku AFC7S Mercury
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2420 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.044
20284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3688 reflectionsΔρmin = 0.20 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02307 (11)0.64024 (9)0.43799 (17)0.0490 (4)
H1N0.01920.65890.35650.059*
N20.13358 (12)0.73555 (10)0.68890 (19)0.0562 (4)
C10.00785 (13)0.68474 (11)0.5771 (2)0.0460 (4)
H10.02420.74470.56680.055*
C20.07995 (13)0.64878 (11)0.7193 (2)0.0458 (4)
H20.07410.68450.80840.055*
C30.05427 (14)0.55713 (11)0.7591 (2)0.0528 (5)
H3A0.00730.55630.83110.063*
H3B0.02370.52610.66630.063*
C40.15662 (15)0.52035 (11)0.8317 (2)0.0499 (5)
C50.17744 (17)0.44613 (13)0.9155 (2)0.0636 (6)
H50.12400.41270.93660.076*
C60.2788 (2)0.42241 (15)0.9675 (3)0.0744 (7)
H60.29340.37211.02230.089*
C70.35794 (19)0.47219 (16)0.9391 (3)0.0766 (7)
H70.42570.45550.97530.092*
C80.33764 (16)0.54720 (14)0.8568 (2)0.0653 (6)
H80.39150.58110.83870.078*
C90.23611 (14)0.57118 (11)0.8019 (2)0.0485 (5)
C100.19475 (13)0.64765 (11)0.7040 (2)0.0456 (4)
H100.22920.69920.74950.055*
C110.20897 (13)0.63816 (10)0.5372 (2)0.0434 (4)
C120.30732 (15)0.63126 (11)0.5033 (2)0.0523 (5)
H120.36360.63650.58450.063*
C130.32582 (15)0.61707 (12)0.3557 (2)0.0540 (5)
C140.24015 (16)0.60999 (12)0.2362 (2)0.0545 (5)
H140.24940.59970.13560.065*
C150.14227 (14)0.61795 (11)0.2647 (2)0.0485 (5)
H150.08640.61280.18280.058*
C160.12446 (13)0.63354 (10)0.4138 (2)0.0427 (4)
C170.43476 (17)0.60998 (15)0.3268 (3)0.0731 (7)
H17A0.48020.59430.42300.088*
H17B0.43710.56490.25260.088*
C180.4737 (2)0.6887 (2)0.2677 (5)0.1291 (13)
H18A0.54270.67980.25200.194*
H18B0.47340.73340.34160.194*
H18C0.43030.70400.17100.194*
C190.10323 (13)0.67742 (11)0.5962 (2)0.0459 (4)
C200.16803 (15)0.61310 (12)0.5276 (2)0.0562 (5)
H200.14460.57310.46500.067*
C210.26739 (16)0.60932 (13)0.5534 (3)0.0620 (6)
H210.31200.56690.50820.074*
C220.29921 (16)0.66882 (15)0.6463 (3)0.0667 (6)
H220.36600.66800.66500.080*
C230.23034 (16)0.73019 (14)0.7117 (3)0.0667 (6)
H230.25250.77030.77550.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0429 (9)0.0609 (9)0.0431 (9)0.0008 (7)0.0077 (7)0.0047 (7)
N20.0480 (10)0.0581 (10)0.0636 (11)0.0033 (7)0.0136 (8)0.0097 (8)
C10.0445 (11)0.0427 (9)0.0513 (11)0.0007 (7)0.0103 (8)0.0045 (8)
C20.0460 (11)0.0466 (10)0.0451 (10)0.0006 (7)0.0091 (8)0.0094 (8)
C30.0511 (12)0.0547 (11)0.0533 (11)0.0027 (8)0.0122 (9)0.0011 (9)
C40.0565 (12)0.0515 (11)0.0408 (10)0.0000 (8)0.0067 (8)0.0038 (8)
C50.0707 (15)0.0608 (13)0.0563 (12)0.0049 (10)0.0051 (11)0.0056 (10)
C60.0868 (18)0.0677 (14)0.0625 (14)0.0120 (13)0.0013 (13)0.0099 (11)
C70.0646 (16)0.0928 (17)0.0676 (15)0.0176 (13)0.0005 (12)0.0117 (13)
C80.0509 (13)0.0838 (15)0.0593 (13)0.0032 (10)0.0056 (10)0.0078 (11)
C90.0475 (12)0.0563 (11)0.0402 (10)0.0008 (8)0.0050 (8)0.0065 (8)
C100.0439 (11)0.0461 (10)0.0461 (10)0.0033 (7)0.0066 (8)0.0066 (8)
C110.0439 (11)0.0418 (9)0.0445 (10)0.0030 (7)0.0086 (8)0.0019 (7)
C120.0436 (12)0.0595 (12)0.0526 (12)0.0034 (8)0.0065 (9)0.0006 (9)
C130.0498 (12)0.0606 (12)0.0540 (12)0.0000 (8)0.0164 (10)0.0008 (9)
C140.0591 (13)0.0595 (12)0.0478 (11)0.0007 (9)0.0178 (10)0.0022 (9)
C150.0489 (12)0.0524 (11)0.0430 (10)0.0017 (8)0.0060 (9)0.0009 (8)
C160.0423 (11)0.0394 (9)0.0471 (10)0.0024 (7)0.0107 (8)0.0004 (7)
C170.0557 (14)0.0962 (17)0.0727 (15)0.0020 (11)0.0255 (12)0.0024 (13)
C180.085 (2)0.129 (3)0.188 (4)0.0048 (18)0.064 (2)0.038 (3)
C190.0462 (11)0.0439 (10)0.0474 (10)0.0035 (8)0.0083 (8)0.0001 (8)
C200.0514 (12)0.0529 (11)0.0651 (13)0.0019 (8)0.0134 (10)0.0089 (9)
C210.0496 (13)0.0631 (13)0.0738 (15)0.0089 (9)0.0129 (11)0.0028 (11)
C220.0467 (12)0.0813 (15)0.0751 (15)0.0015 (11)0.0192 (11)0.0010 (12)
C230.0532 (14)0.0742 (14)0.0765 (15)0.0050 (10)0.0218 (11)0.0149 (11)
Geometric parameters (Å, º) top
N1—C161.403 (2)C10—H100.9800
N1—C11.458 (2)C11—C121.395 (3)
N1—H1N0.8700C11—C161.401 (2)
N2—C231.337 (2)C12—C131.384 (3)
N2—C191.340 (2)C12—H120.9300
C1—C191.517 (2)C13—C141.393 (3)
C1—C21.528 (2)C13—C171.516 (3)
C1—H10.9800C14—C151.373 (3)
C2—C31.543 (2)C14—H140.9300
C2—C101.552 (2)C15—C161.397 (2)
C2—H20.9800C15—H150.9300
C3—C41.499 (3)C17—C181.479 (3)
C3—H3A0.9700C17—H17A0.9700
C3—H3B0.9700C17—H17B0.9700
C4—C51.384 (3)C18—H18A0.9600
C4—C91.389 (3)C18—H18B0.9600
C5—C61.383 (3)C18—H18C0.9600
C5—H50.9300C19—C201.390 (3)
C6—C71.371 (3)C20—C211.379 (3)
C6—H60.9300C20—H200.9300
C7—C81.387 (3)C21—C221.364 (3)
C7—H70.9300C21—H210.9300
C8—C91.390 (3)C22—C231.378 (3)
C8—H80.9300C22—H220.9300
C9—C101.522 (2)C23—H230.9300
C10—C111.521 (2)
C16—N1—C1117.08 (14)C12—C11—C16118.00 (17)
C16—N1—H1N112.5C12—C11—C10120.53 (16)
C1—N1—H1N110.8C16—C11—C10121.44 (16)
C23—N2—C19117.16 (17)C13—C12—C11123.67 (18)
N1—C1—C19110.52 (14)C13—C12—H12118.2
N1—C1—C2109.93 (14)C11—C12—H12118.2
C19—C1—C2110.28 (14)C12—C13—C14116.96 (18)
N1—C1—H1108.7C12—C13—C17121.04 (18)
C19—C1—H1108.7C14—C13—C17122.00 (18)
C2—C1—H1108.7C15—C14—C13120.98 (18)
C1—C2—C3113.82 (14)C15—C14—H14119.5
C1—C2—C10113.60 (14)C13—C14—H14119.5
C3—C2—C10105.75 (14)C14—C15—C16121.60 (17)
C1—C2—H2107.8C14—C15—H15119.2
C3—C2—H2107.8C16—C15—H15119.2
C10—C2—H2107.8C15—C16—C11118.71 (17)
C4—C3—C2103.86 (15)C15—C16—N1119.70 (16)
C4—C3—H3A111.0C11—C16—N1121.53 (16)
C2—C3—H3A111.0C18—C17—C13113.9 (2)
C4—C3—H3B111.0C18—C17—H17A108.8
C2—C3—H3B111.0C13—C17—H17A108.8
H3A—C3—H3B109.0C18—C17—H17B108.8
C5—C4—C9120.69 (18)C13—C17—H17B108.8
C5—C4—C3128.74 (18)H17A—C17—H17B107.7
C9—C4—C3110.56 (16)C17—C18—H18A109.5
C6—C5—C4119.1 (2)C17—C18—H18B109.5
C6—C5—H5120.5H18A—C18—H18B109.5
C4—C5—H5120.5C17—C18—H18C109.5
C7—C6—C5120.8 (2)H18A—C18—H18C109.5
C7—C6—H6119.6H18B—C18—H18C109.5
C5—C6—H6119.6N2—C19—C20122.16 (17)
C6—C7—C8120.5 (2)N2—C19—C1115.24 (15)
C6—C7—H7119.8C20—C19—C1122.56 (16)
C8—C7—H7119.8C21—C20—C19119.26 (18)
C7—C8—C9119.4 (2)C21—C20—H20120.4
C7—C8—H8120.3C19—C20—H20120.4
C9—C8—H8120.3C22—C21—C20118.92 (19)
C4—C9—C8119.61 (19)C22—C21—H21120.5
C4—C9—C10111.27 (16)C20—C21—H21120.5
C8—C9—C10129.09 (18)C21—C22—C23118.6 (2)
C11—C10—C9111.60 (14)C21—C22—H22120.7
C11—C10—C2113.02 (14)C23—C22—H22120.7
C9—C10—C2102.20 (14)N2—C23—C22123.90 (19)
C11—C10—H10109.9N2—C23—H23118.1
C9—C10—H10109.9C22—C23—H23118.1
C2—C10—H10109.9
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.872.533.345 (2)157
C20—H20···N10.932.512.825 (3)100
C14—H14···Cg4ii0.932.743.611 (2)153
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC23H22N2
Mr326.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.241 (4), 15.801 (4), 8.789 (2)
β (°) 101.168 (6)
V3)1804.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerRigaku AFC7S Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
20284, 3688, 2420
Rint0.044
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.157, 1.07
No. of reflections3688
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: CrystalClear (Rigaku, 2002), SHELXTL-NT (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL-NT (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.872.533.345 (2)157
C20—H20···N10.932.512.825 (3)100
C14—H14···Cg4ii0.932.743.611 (2)153
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y, z1.
 

Acknowledgements

The authors are grateful for financial support from the Colombian Institute for Science and Research (COLCIENCIAS-CENIVAM, grant No. 432–2004) and FONACIT-MCT Venezuela (project: LAB-199700821). ARRB also thanks COLCIENCIAS for a fellowship.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDenny, W. A. & Baguley, B. C. (2003). Curr. Top. Med. Chem. 3, 339–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEwesuedo, R. B., Iyer, L., Das, S., Koenig, A., Mani, S., Vogelzang, N. J., Schilsky, R. L., Brenckman, W. & Ratain, M. J. (2001). J. Clin. Oncol. 19, 2084–2090.  Web of Science PubMed CAS Google Scholar
First citationGelderblom, H. & Sparreboom, A. (2006). In Drugs Affecting of Tumours, edited by H. M. Pinedo & C. H. Smorenburg, pp. 83–100. Switzerland: Birkhuser Vergal.  Google Scholar
First citationIshida, K. & Asao, T. (2002). Biochim. Biophys. Acta, 1587, 155–163.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKouznetsov, V. V., Ochoa Puentes, C., Zachinno, S. A., Gupta, M., Romero, B. A. R., Sortino, M., Vásquez, Y., Bahsas, A. & Amaro-Luis, J. (2006). Lett. Org. Chem. 3, 300–304.  Web of Science CrossRef CAS Google Scholar
First citationLi, Q.-Y., Zu, Y.-G., Shi, R.-Z. & Yao, L.-P. (2006). Curr. Med. Chem. 13, 2021–2039.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartínez, R. & Chacón-García, L. (2005). Curr. Med. Chem. 12, 127–151.  Web of Science PubMed Google Scholar
First citationOhyama, T., Li, Y., Utsugi, T., Irie, S., Yamada, Y. & Sato, T. (1999). Jpn J. Cancer Res. 44, 691–698.  CrossRef Google Scholar
First citationPommier, Y. (2006). Nat. Rev. Cancer, 6, 789–802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPriel, E., Showalter, S. D., Roberts, M., Oroszlan, S. & Blair, D. G. (1991). J. Virol. 65, 4137–4141.  PubMed CAS Web of Science Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwelves, C. J., Gardner, C., Flavin, A., Sludden, J., Dennis, I., de Bono, J., Beale, P., Vasey, P., Hutchison, C., Macham, M. A., Rodríguez, A., Judson, I. & Bleehen, N. M. (1999). Br. J. Cancer, 80, 1786–1791.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 3| March 2010| Pages o680-o681
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds