organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 4-hy­droxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 February 2010; accepted 3 February 2010; online 6 February 2010)

In the title salt, C5H6ClN2+·C7H5O3, the carboxyl­ate mean plane of the 4-hydroxy­benzoate anion is twisted by 7.16 (9)° from the attached ring. In the crystal structure, the cations and anions are linked via O—H⋯O and N—H⋯O hydrogen bonds, as well as C—H⋯O contacts, forming a three-dimensional network. In addition, weak ππ inter­actions involving the benzene and pyridinium rings, with centroid-to-centroid distances of 3.8941 (9) Å, are observed.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]); Akriche & Rzaigui (2005[Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.]); Janczak & Perpétuo (2009[Janczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339-o341.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. New York: Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C7H5O3

  • Mr = 266.68

  • Monoclinic, P 21 /c

  • a = 10.0893 (3) Å

  • b = 11.7612 (4) Å

  • c = 11.6634 (3) Å

  • β = 116.113 (2)°

  • V = 1242.74 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.69 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 0.958

  • 12446 measured reflections

  • 3630 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.04

  • 3630 reflections

  • 207 parameters

  • All H-atom parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3i 0.84 (2) 1.91 (2) 2.7132 (15) 160 (2)
N1—H1N1⋯O2ii 0.99 (2) 1.66 (2) 2.6320 (18) 169.2 (18)
N2—H1N2⋯O2iii 0.857 (19) 2.051 (19) 2.8972 (18) 169 (2)
N2—H2N2⋯O3ii 0.92 (2) 1.93 (2) 2.825 (2) 167 (2)
C3—H3A⋯O3 0.95 (2) 2.488 (19) 3.181 (2) 129.5 (14)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis (2-amino-5-chloropyridinium) dihydrogendiphosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains a 2-amino-5-chloropyridinium cation and a 4-hydroxybenzoate anion. The proton transfer from the carboxylic acid to atom N1 of 2-amino-5-chloropyridine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.24 (12)°, compared to the corresponding angle of 118.1 (12)° in neutral 2-amino-5-chloropyridine (Pourayoubi et al., 2007). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.012 (2) Å for atom C1. In the 4-hydroxybenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between the C6–C11 and O2/O3/C11/C12 planes is 7.16 (9) °.

In the crystal packing (Fig. 2), the protonated N1 atom and the N2-amino group is hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al., 1995). The hydroxyl hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through an O—H···O hydrogen bond. The packing is further stabilized by weak C—H···O contacts, Table 1, and π···π interactions involving the benzene (centroid Cg1) and pyridinium (centroid Cg2) rings, with Cg1–Cg2 = 3.8941 (9) Å [symmetry code: x, 3/2 - y, 1/2 + z].

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Akriche & Rzaigui (2005); Janczak & Perpétuo (2009). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (65 mg, Aldrich) and 4-hydroxybenzoic acid (69 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.858 (19)–0.99 (2) Å, O—H = 0.83 (2) Å, C—H = 0.925 (19)–0.965 (16) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-Amino-5-chloropyridinium 4-hydroxybenzoate top
Crystal data top
C5H6ClN2+·C7H5O3F(000) = 552
Mr = 266.68Dx = 1.425 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4875 reflections
a = 10.0893 (3) Åθ = 2.3–29.9°
b = 11.7612 (4) ŵ = 0.31 mm1
c = 11.6634 (3) ÅT = 100 K
β = 116.113 (2)°Block, colourless
V = 1242.74 (6) Å30.69 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3630 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1314
Tmin = 0.814, Tmax = 0.958k = 1616
12446 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2067P]
where P = (Fo2 + 2Fc2)/3
3630 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C5H6ClN2+·C7H5O3V = 1242.74 (6) Å3
Mr = 266.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0893 (3) ŵ = 0.31 mm1
b = 11.7612 (4) ÅT = 100 K
c = 11.6634 (3) Å0.69 × 0.20 × 0.14 mm
β = 116.113 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3630 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2663 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.958Rint = 0.020
12446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110All H-atom parameters refined
S = 1.04Δρmax = 0.22 e Å3
3630 reflectionsΔρmin = 0.26 e Å3
207 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21064 (4)0.98776 (4)0.17272 (4)0.06226 (15)
N10.51321 (13)0.78671 (10)0.07645 (11)0.0444 (3)
N20.63089 (16)0.77385 (14)0.29586 (13)0.0574 (3)
C10.53134 (15)0.82441 (12)0.19187 (13)0.0439 (3)
C20.44186 (16)0.91497 (14)0.19530 (14)0.0510 (4)
C30.34358 (17)0.96337 (14)0.08507 (15)0.0512 (4)
C40.33162 (14)0.92372 (13)0.03259 (13)0.0454 (3)
C50.41534 (15)0.83516 (13)0.03444 (13)0.0454 (3)
O10.00092 (13)0.66336 (10)0.45630 (11)0.0579 (3)
O20.34526 (13)1.11961 (9)0.47186 (9)0.0567 (3)
O30.22698 (11)1.09176 (8)0.26301 (8)0.0463 (2)
C60.21056 (18)0.92410 (14)0.51840 (13)0.0531 (4)
C70.14592 (19)0.82697 (15)0.53591 (13)0.0563 (4)
C80.06192 (15)0.75826 (12)0.43312 (13)0.0438 (3)
C90.04555 (15)0.78713 (12)0.31209 (12)0.0426 (3)
C100.11107 (14)0.88452 (12)0.29507 (12)0.0397 (3)
C110.19355 (14)0.95522 (12)0.39715 (11)0.0392 (3)
C120.25875 (14)1.06243 (12)0.37582 (12)0.0398 (3)
H2A0.4538 (17)0.9382 (14)0.2769 (16)0.059 (5)*
H3A0.283 (2)1.0251 (15)0.0866 (17)0.064 (5)*
H5A0.4139 (17)0.8021 (14)0.1096 (16)0.060 (5)*
H6A0.2676 (19)0.9721 (15)0.5889 (17)0.065 (5)*
H7A0.1571 (19)0.8087 (16)0.6168 (18)0.068 (5)*
H9A0.0099 (17)0.7369 (13)0.2417 (15)0.054 (4)*
H10A0.1007 (16)0.9043 (13)0.2125 (15)0.048 (4)*
H1O10.053 (2)0.6331 (17)0.386 (2)0.073 (6)*
H1N10.575 (2)0.7250 (16)0.0689 (18)0.076 (6)*
H1N20.6509 (19)0.8050 (16)0.3681 (18)0.062 (5)*
H2N20.689 (2)0.7177 (19)0.2877 (19)0.080 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0607 (2)0.0623 (3)0.0572 (2)0.00938 (18)0.01990 (18)0.00670 (19)
N10.0523 (6)0.0433 (6)0.0410 (6)0.0039 (5)0.0235 (5)0.0053 (5)
N20.0729 (8)0.0590 (9)0.0403 (6)0.0110 (7)0.0249 (6)0.0023 (6)
C10.0515 (7)0.0438 (7)0.0425 (6)0.0042 (6)0.0262 (6)0.0069 (6)
C20.0587 (8)0.0536 (9)0.0476 (7)0.0000 (7)0.0297 (6)0.0132 (7)
C30.0528 (7)0.0479 (9)0.0585 (8)0.0037 (7)0.0297 (7)0.0092 (7)
C40.0441 (6)0.0451 (8)0.0475 (7)0.0022 (6)0.0206 (5)0.0043 (6)
C50.0504 (7)0.0467 (8)0.0416 (7)0.0000 (6)0.0226 (6)0.0071 (6)
O10.0716 (7)0.0539 (7)0.0450 (5)0.0210 (6)0.0228 (5)0.0014 (5)
O20.0799 (7)0.0531 (6)0.0401 (5)0.0245 (5)0.0291 (5)0.0082 (5)
O30.0597 (5)0.0440 (5)0.0370 (4)0.0000 (4)0.0229 (4)0.0042 (4)
C60.0709 (9)0.0536 (9)0.0333 (6)0.0166 (8)0.0217 (6)0.0052 (6)
C70.0763 (10)0.0591 (10)0.0347 (6)0.0180 (8)0.0256 (7)0.0003 (7)
C80.0486 (7)0.0423 (7)0.0406 (6)0.0039 (6)0.0197 (5)0.0024 (6)
C90.0485 (6)0.0418 (7)0.0345 (6)0.0032 (6)0.0155 (5)0.0028 (6)
C100.0466 (6)0.0403 (7)0.0329 (6)0.0027 (6)0.0181 (5)0.0014 (5)
C110.0459 (6)0.0384 (7)0.0348 (6)0.0000 (5)0.0192 (5)0.0001 (5)
C120.0480 (6)0.0380 (7)0.0372 (6)0.0018 (6)0.0224 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cl1—C41.7241 (15)O1—H1O10.83 (2)
N1—C11.3511 (17)O2—C121.2682 (15)
N1—C51.3595 (18)O3—C121.2577 (15)
N1—H1N10.99 (2)C6—C71.375 (2)
N2—C11.3271 (19)C6—C111.3963 (18)
N2—H1N20.858 (19)C6—H6A0.954 (18)
N2—H2N20.91 (2)C7—C81.384 (2)
C1—C21.408 (2)C7—H7A0.925 (19)
C2—C31.356 (2)C8—C91.3892 (19)
C2—H2A0.946 (16)C9—C101.3798 (19)
C3—C41.403 (2)C9—H9A0.965 (16)
C3—H3A0.953 (18)C10—C111.3889 (18)
C4—C51.347 (2)C10—H10A0.950 (15)
C5—H5A0.953 (17)C11—C121.4929 (19)
O1—C81.3581 (17)
C1—N1—C5122.24 (12)C7—C6—C11120.90 (13)
C1—N1—H1N1121.1 (11)C7—C6—H6A120.6 (11)
C5—N1—H1N1116.5 (11)C11—C6—H6A118.5 (11)
C1—N2—H1N2117.6 (12)C6—C7—C8120.42 (13)
C1—N2—H2N2119.3 (13)C6—C7—H7A119.5 (11)
H1N2—N2—H2N2121.8 (18)C8—C7—H7A120.1 (11)
N2—C1—N1118.66 (13)O1—C8—C7117.77 (12)
N2—C1—C2123.35 (13)O1—C8—C9122.79 (12)
N1—C1—C2117.98 (13)C7—C8—C9119.43 (13)
C3—C2—C1120.07 (13)C10—C9—C8119.92 (12)
C3—C2—H2A123.3 (10)C10—C9—H9A121.4 (10)
C1—C2—H2A116.6 (10)C8—C9—H9A118.7 (10)
C2—C3—C4120.00 (14)C9—C10—C11121.19 (12)
C2—C3—H3A120.6 (11)C9—C10—H10A120.2 (9)
C4—C3—H3A119.4 (11)C11—C10—H10A118.7 (9)
C5—C4—C3119.20 (13)C10—C11—C6118.13 (13)
C5—C4—Cl1120.66 (11)C10—C11—C12120.30 (11)
C3—C4—Cl1120.14 (11)C6—C11—C12121.56 (12)
C4—C5—N1120.45 (13)O3—C12—O2122.55 (12)
C4—C5—H5A125.1 (10)O3—C12—C11118.55 (11)
N1—C5—H5A114.5 (10)O2—C12—C11118.89 (11)
C8—O1—H1O1108.3 (14)
C5—N1—C1—N2178.89 (13)C6—C7—C8—C91.2 (2)
C5—N1—C1—C21.8 (2)O1—C8—C9—C10179.65 (13)
N2—C1—C2—C3179.25 (15)C7—C8—C9—C100.9 (2)
N1—C1—C2—C31.5 (2)C8—C9—C10—C110.2 (2)
C1—C2—C3—C40.4 (2)C9—C10—C11—C61.0 (2)
C2—C3—C4—C52.1 (2)C9—C10—C11—C12177.69 (12)
C2—C3—C4—Cl1178.10 (12)C7—C6—C11—C100.8 (2)
C3—C4—C5—N11.8 (2)C7—C6—C11—C12177.90 (15)
Cl1—C4—C5—N1178.38 (11)C10—C11—C12—O35.95 (19)
C1—N1—C5—C40.2 (2)C6—C11—C12—O3172.73 (13)
C11—C6—C7—C80.3 (3)C10—C11—C12—O2173.19 (12)
C6—C7—C8—O1179.94 (15)C6—C11—C12—O28.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.84 (2)1.91 (2)2.7132 (15)160 (2)
N1—H1N1···O2ii0.99 (2)1.66 (2)2.6320 (18)169.2 (18)
N2—H1N2···O2iii0.857 (19)2.051 (19)2.8972 (18)169 (2)
N2—H2N2···O3ii0.92 (2)1.93 (2)2.825 (2)167 (2)
C3—H3A···O30.95 (2)2.488 (19)3.181 (2)129.5 (14)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C7H5O3
Mr266.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.0893 (3), 11.7612 (4), 11.6634 (3)
β (°) 116.113 (2)
V3)1242.74 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.69 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.814, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12446, 3630, 2663
Rint0.020
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.04
No. of reflections3630
No. of parameters207
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.84 (2)1.91 (2)2.7132 (15)160 (2)
N1—H1N1···O2ii0.99 (2)1.66 (2)2.6320 (18)169.2 (18)
N2—H1N2···O2iii0.857 (19)2.051 (19)2.8972 (18)169 (2)
N2—H2N2···O3ii0.92 (2)1.93 (2)2.825 (2)167 (2)
C3—H3A···O30.95 (2)2.488 (19)3.181 (2)129.5 (14)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAkriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339–o341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds