supplementary materials


vm2019 scheme

Acta Cryst. (2010). E66, o704    [ doi:10.1107/S1600536810006628 ]

(2R,3S)-2-Benzyl-3-(2,3,4,6-tetra-O-acetyl-[beta]-D-glucopyranosyloxy)butanolide

F. Zhang, J. Zhong, B. Han, D. Yin and H. Huang

Abstract top

The title compound, C25H30O12, which demonstrates a significant hepatoprotective effect, has comparable geometrical parameters to those of similar compounds. The absolute configuration of the title compound, viz. 2R,3S, was identified from the Flack parameter of 0.05 (17) and the Hooft parameter of 0.04 (6).

Comment top

The title compound was found to have a significant hepatoprotective effect, comparable to the natural product Goodyeroside A (Du & Irinon, 2008). Recently, the compound was successfully crystallized from a petroleum ether/EtOAc mixture, yielding crystals suitable for X-ray analysis.

Fig.1 shows the molecular structure of the title compound with atomic numbering scheme. The bond lengths and angles are in agreement with reported literature values (Table 1) (Allen et al., 1987). The benzene ring (C6—C11) is essentially planar, with r.m.s deviations of 0.0078 (14) Å. The five-membered ring (C1—C4/O2) has an envelope conformation with the C3 atom out of plane and the six-membered ring (C1'-C5'/O4) is in its chair conformation. The dihedral angles between the various rings in the title compound are as follows, where the first atom is used to identify its five- or six- membered ring: C1/C6 112.9 (1)°; C1/C1' 110.1 (1)°; C6/C1' 13.1 (1)°.

In order to determine the absolute configuration of the title compound, the data collection was performed using Cu Kα. The absolute configuration is confirmed by the Flack parameter 0.05 (17) and Hooft parameter 0.04 (6) (Flack, 1983; Hooft et al., 2008).

Related literature top

For the hepatoprotective effect of the title compound, see: Du & Irinon (2008). For bond-length data, see: Allen et al. (1987). For the Hooft parameter, see: Hooft et al.(2008). For details of the preparation, see: Saito et al. (1992); Kazumasa et al. (2000); Schmidt (1986); Corey & Venkateswarlu (1972); Fernandez et al. (1997).

Experimental top

To a solution of Ethyl (2R,3S)-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyloxy)-2- benzyl-4-hydroxybutanoate (1.0 equiv) in 1,4-dioxane (10 ml) was added 4-methylbenzenesulfonic acid (1.0 equiv), then the solution was stirred at room temperature for 2 days. After removal of the solvent in vacuo, the residue was purified by column chromatography. White crystals suitable for X-ray analysis were obtained by slow evaportion of a petroleum ether/EtOAc solution over a period of two weeks (Saito et al., 1992; Kazumasa et al., 2000; Schmidt, 1986; Corey & Venkateswarlu, 1972; Fernandez et al., 1997).

Refinement top

All H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C—H distances in the range of 0.95-1.00 Å, with a displacement parameter Uiso set to 1.2 (CH and CH2) or 1.5(CH3) times Ueq of the parent atom.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(2R,3S)-2-Benzyl-3-(2,3,4,6-tetra-O-acetyl-β-D- glucopyranosyloxy)butanolide top
Crystal data top
C25H30O12F(000) = 1104
Mr = 522.49Dx = 1.282 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 5304 reflections
a = 10.6142 (2) Åθ = 4.0–65.7°
b = 11.0984 (2) ŵ = 0.87 mm1
c = 22.9714 (3) ÅT = 153 K
V = 2706.05 (8) Å3Block, white
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Mac dip 2030b
diffractometer
4102 independent reflections
Radiation source: rotating anode4015 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 0 pixels mm-1θmax = 66.0°, θmin = 4.4°
ω scansh = 129
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.880, Tmax = 0.918l = 2626
7246 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.5803P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4102 reflectionsΔρmax = 0.34 e Å3
334 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1417 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (17)
Crystal data top
C25H30O12V = 2706.05 (8) Å3
Mr = 522.49Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 10.6142 (2) ŵ = 0.87 mm1
b = 11.0984 (2) ÅT = 153 K
c = 22.9714 (3) Å0.15 × 0.15 × 0.10 mm
Data collection top
Mac dip 2030b
diffractometer
4102 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4015 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.918Rint = 0.016
7246 measured reflectionsθmax = 66.0°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.34 e Å3
S = 1.07Δρmin = 0.22 e Å3
4102 reflectionsAbsolute structure: Flack (1983), 1417 Friedel pairs
334 parametersFlack parameter: 0.05 (17)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47650 (16)0.31851 (14)0.32119 (7)0.0442 (4)
O20.58032 (14)0.48590 (14)0.29725 (6)0.0403 (3)
O30.49559 (12)0.47669 (12)0.17568 (6)0.0311 (3)
O40.44988 (12)0.58270 (12)0.09414 (6)0.0300 (3)
O50.73101 (12)0.40529 (12)0.12561 (6)0.0319 (3)
O60.71425 (13)0.39829 (13)0.00188 (6)0.0351 (3)
O70.61363 (13)0.62268 (12)0.04400 (6)0.0325 (3)
O80.29897 (12)0.61966 (13)0.00230 (6)0.0353 (3)
O90.64011 (15)0.22826 (13)0.14807 (7)0.0427 (4)
O100.89389 (19)0.49770 (18)0.01722 (12)0.0784 (7)
O110.5236 (2)0.4937 (2)0.10623 (7)0.0675 (6)
O120.2865 (2)0.7043 (2)0.09013 (8)0.0739 (7)
C10.4778 (2)0.41371 (19)0.29662 (9)0.0341 (4)
C20.37455 (19)0.47400 (18)0.26180 (8)0.0306 (4)
H2A0.32810.52830.28910.037*
C30.45018 (18)0.55428 (17)0.22133 (8)0.0297 (4)
H3A0.40100.62470.20640.036*
C40.5581 (2)0.59050 (19)0.26080 (9)0.0351 (4)
H4A0.63410.61030.23770.042*
H4B0.53500.66130.28470.042*
C50.2771 (2)0.38840 (18)0.23518 (9)0.0346 (4)
H5A0.31740.34090.20380.042*
H5B0.24770.33140.26540.042*
C60.16563 (19)0.45524 (18)0.21066 (10)0.0354 (4)
C70.0715 (2)0.4974 (2)0.24720 (10)0.0421 (5)
H7A0.07560.48080.28770.050*
C80.0285 (2)0.5636 (2)0.22519 (15)0.0569 (7)
H8A0.09160.59280.25090.068*
C90.0377 (3)0.5875 (2)0.16642 (15)0.0616 (8)
H9A0.10640.63280.15150.074*
C100.0552 (3)0.5443 (3)0.12938 (13)0.0606 (8)
H10A0.04930.55910.08870.073*
C110.1569 (2)0.4795 (2)0.15118 (10)0.0456 (5)
H11A0.22070.45160.12550.055*
C1'0.54911 (18)0.53583 (18)0.12866 (8)0.0294 (4)
H1'A0.60620.60180.14210.035*
C2'0.62123 (18)0.44333 (18)0.09365 (8)0.0283 (4)
H2'A0.56610.37230.08540.034*
C3'0.66843 (17)0.49655 (17)0.03700 (8)0.0281 (4)
H3'A0.73800.55510.04480.034*
C4'0.56170 (18)0.55880 (17)0.00501 (8)0.0288 (4)
H4'A0.49970.49740.00890.035*
C5'0.49602 (18)0.64833 (18)0.04534 (8)0.0299 (4)
H5'A0.55820.71000.05890.036*
C6'0.38565 (19)0.71066 (19)0.01696 (9)0.0359 (5)
H6'A0.34390.76500.04520.043*
H6'B0.41480.75930.01660.043*
C7'0.7291 (2)0.29459 (19)0.15016 (9)0.0351 (4)
C8'0.8527 (3)0.2666 (2)0.17810 (13)0.0547 (6)
H8'A0.84930.18600.19550.082*
H8'B0.87030.32620.20850.082*
H8'C0.91950.26920.14870.082*
C9'0.8281 (2)0.4122 (2)0.02386 (12)0.0516 (6)
C10'0.8550 (4)0.3043 (3)0.06145 (19)0.0899 (12)
H10B0.93700.31430.08040.135*
H10C0.78920.29670.09120.135*
H10D0.85620.23150.03730.135*
C11'0.5904 (2)0.5778 (2)0.09765 (9)0.0385 (5)
C12'0.6610 (2)0.6479 (2)0.14304 (10)0.0464 (5)
H12A0.64310.61420.18160.070*
H12B0.75160.64280.13530.070*
H12C0.63430.73240.14190.070*
C13'0.26186 (19)0.6221 (2)0.05781 (9)0.0403 (5)
C14'0.1842 (2)0.5152 (3)0.07186 (11)0.0526 (6)
H14A0.15850.51860.11280.079*
H14B0.10910.51440.04700.079*
H14C0.23340.44190.06500.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (9)0.0361 (8)0.0410 (8)0.0107 (7)0.0020 (7)0.0053 (7)
O20.0368 (8)0.0424 (9)0.0418 (7)0.0029 (7)0.0093 (6)0.0006 (7)
O30.0359 (7)0.0277 (7)0.0297 (6)0.0020 (5)0.0038 (5)0.0030 (6)
O40.0273 (7)0.0310 (7)0.0318 (6)0.0005 (6)0.0018 (5)0.0016 (6)
O50.0276 (7)0.0281 (7)0.0401 (7)0.0025 (6)0.0058 (6)0.0042 (6)
O60.0340 (7)0.0320 (7)0.0393 (7)0.0047 (6)0.0059 (6)0.0049 (6)
O70.0321 (7)0.0342 (7)0.0313 (6)0.0013 (6)0.0026 (6)0.0017 (6)
O80.0294 (7)0.0396 (8)0.0369 (7)0.0006 (6)0.0016 (6)0.0059 (6)
O90.0455 (9)0.0308 (8)0.0518 (8)0.0081 (7)0.0055 (7)0.0073 (7)
O100.0542 (11)0.0501 (12)0.1310 (19)0.0041 (10)0.0518 (12)0.0067 (12)
O110.0873 (14)0.0811 (15)0.0342 (8)0.0362 (13)0.0059 (8)0.0060 (9)
O120.0730 (13)0.0984 (17)0.0504 (10)0.0315 (12)0.0147 (9)0.0310 (11)
C10.0384 (11)0.0333 (11)0.0305 (9)0.0050 (9)0.0005 (8)0.0050 (9)
C20.0327 (10)0.0287 (10)0.0303 (9)0.0043 (8)0.0020 (8)0.0028 (8)
C30.0300 (10)0.0271 (10)0.0320 (9)0.0022 (8)0.0005 (8)0.0042 (8)
C40.0331 (10)0.0339 (11)0.0383 (10)0.0011 (8)0.0029 (8)0.0039 (9)
C50.0345 (10)0.0280 (10)0.0413 (10)0.0006 (9)0.0030 (9)0.0007 (9)
C60.0317 (10)0.0280 (10)0.0464 (11)0.0061 (8)0.0026 (9)0.0024 (9)
C70.0312 (10)0.0416 (12)0.0534 (12)0.0050 (9)0.0025 (9)0.0091 (11)
C80.0311 (12)0.0459 (14)0.094 (2)0.0005 (10)0.0113 (12)0.0126 (14)
C90.0429 (14)0.0391 (13)0.103 (2)0.0070 (11)0.0301 (15)0.0106 (15)
C100.0598 (17)0.0572 (16)0.0650 (16)0.0182 (14)0.0268 (14)0.0211 (14)
C110.0473 (12)0.0424 (13)0.0471 (12)0.0111 (11)0.0049 (10)0.0031 (10)
C1'0.0280 (9)0.0284 (10)0.0317 (9)0.0053 (8)0.0001 (8)0.0017 (8)
C2'0.0234 (9)0.0271 (10)0.0342 (9)0.0028 (7)0.0031 (8)0.0009 (8)
C3'0.0251 (9)0.0255 (9)0.0337 (9)0.0003 (7)0.0034 (7)0.0034 (8)
C4'0.0273 (9)0.0280 (10)0.0310 (9)0.0028 (7)0.0018 (8)0.0006 (8)
C5'0.0277 (10)0.0282 (10)0.0338 (9)0.0011 (7)0.0027 (8)0.0001 (8)
C6'0.0309 (10)0.0329 (11)0.0439 (11)0.0045 (9)0.0021 (9)0.0018 (9)
C7'0.0404 (11)0.0284 (10)0.0366 (10)0.0008 (9)0.0039 (9)0.0014 (8)
C8'0.0558 (15)0.0383 (13)0.0701 (15)0.0020 (11)0.0260 (13)0.0120 (12)
C9'0.0476 (13)0.0386 (13)0.0686 (15)0.0099 (11)0.0254 (12)0.0046 (12)
C10'0.087 (2)0.0606 (18)0.122 (3)0.0138 (17)0.060 (2)0.014 (2)
C11'0.0371 (12)0.0449 (13)0.0335 (10)0.0044 (10)0.0032 (9)0.0009 (9)
C12'0.0471 (13)0.0555 (14)0.0365 (10)0.0082 (11)0.0073 (10)0.0059 (10)
C13'0.0272 (10)0.0571 (14)0.0367 (10)0.0039 (9)0.0007 (9)0.0101 (10)
C14'0.0434 (13)0.0680 (17)0.0464 (12)0.0034 (12)0.0112 (10)0.0012 (12)
Geometric parameters (Å, °) top
O1—C11.198 (3)C8—H8A0.9500
O2—C11.351 (3)C9—C101.388 (5)
O2—C41.451 (3)C9—H9A0.9500
O3—C1'1.386 (2)C10—C111.390 (4)
O3—C31.440 (2)C10—H10A0.9500
O4—C1'1.417 (2)C11—H11A0.9500
O4—C5'1.424 (2)C1'—C2'1.512 (3)
O5—C7'1.352 (3)C1'—H1'A1.0000
O5—C2'1.440 (2)C2'—C3'1.514 (3)
O6—C9'1.355 (3)C2'—H2'A1.0000
O6—C3'1.441 (2)C3'—C4'1.517 (3)
O7—C11'1.352 (2)C3'—H3'A1.0000
O7—C4'1.440 (2)C4'—C5'1.527 (3)
O8—C13'1.335 (3)C4'—H4'A1.0000
O8—C6'1.436 (3)C5'—C6'1.509 (3)
O9—C7'1.199 (3)C5'—H5'A1.0000
O10—C9'1.188 (3)C6'—H6'A0.9900
O11—C11'1.189 (3)C6'—H6'B0.9900
O12—C13'1.205 (3)C7'—C8'1.493 (3)
C1—C21.513 (3)C8'—H8'A0.9800
C2—C31.517 (3)C8'—H8'B0.9800
C2—C51.532 (3)C8'—H8'C0.9800
C2—H2A1.0000C9'—C10'1.504 (4)
C3—C41.515 (3)C10'—H10B0.9800
C3—H3A1.0000C10'—H10C0.9800
C4—H4A0.9900C10'—H10D0.9800
C4—H4B0.9900C11'—C12'1.501 (3)
C5—C61.506 (3)C12'—H12A0.9800
C5—H5A0.9900C12'—H12B0.9800
C5—H5B0.9900C12'—H12C0.9800
C6—C71.386 (3)C13'—C14'1.480 (4)
C6—C111.396 (3)C14'—H14A0.9800
C7—C81.387 (3)C14'—H14B0.9800
C7—H7A0.9500C14'—H14C0.9800
C8—C91.379 (5)
C1—O2—C4109.73 (15)C1'—C2'—H2'A109.8
C1'—O3—C3114.93 (15)C3'—C2'—H2'A109.8
C1'—O4—C5'111.88 (14)O6—C3'—C2'107.32 (15)
C7'—O5—C2'117.84 (15)O6—C3'—C4'108.99 (15)
C9'—O6—C3'117.33 (17)C2'—C3'—C4'110.30 (15)
C11'—O7—C4'117.49 (16)O6—C3'—H3'A110.1
C13'—O8—C6'117.98 (17)C2'—C3'—H3'A110.1
O1—C1—O2121.81 (19)C4'—C3'—H3'A110.1
O1—C1—C2129.1 (2)O7—C4'—C3'108.49 (15)
O2—C1—C2109.08 (17)O7—C4'—C5'109.19 (15)
C1—C2—C3101.56 (16)C3'—C4'—C5'110.08 (15)
C1—C2—C5115.21 (17)O7—C4'—H4'A109.7
C3—C2—C5118.49 (16)C3'—C4'—H4'A109.7
C1—C2—H2A106.9C5'—C4'—H4'A109.7
C3—C2—H2A106.9O4—C5'—C6'107.93 (16)
C5—C2—H2A106.9O4—C5'—C4'107.57 (15)
O3—C3—C4109.95 (16)C6'—C5'—C4'112.99 (16)
O3—C3—C2105.78 (15)O4—C5'—H5'A109.4
C4—C3—C2100.91 (16)C6'—C5'—H5'A109.4
O3—C3—H3A113.1C4'—C5'—H5'A109.4
C4—C3—H3A113.1O8—C6'—C5'107.95 (16)
C2—C3—H3A113.1O8—C6'—H6'A110.1
O2—C4—C3104.82 (16)C5'—C6'—H6'A110.1
O2—C4—H4A110.8O8—C6'—H6'B110.1
C3—C4—H4A110.8C5'—C6'—H6'B110.1
O2—C4—H4B110.8H6'A—C6'—H6'B108.4
C3—C4—H4B110.8O9—C7'—O5123.58 (19)
H4A—C4—H4B108.9O9—C7'—C8'125.6 (2)
C6—C5—C2111.99 (16)O5—C7'—C8'110.83 (18)
C6—C5—H5A109.2C7'—C8'—H8'A109.5
C2—C5—H5A109.2C7'—C8'—H8'B109.5
C6—C5—H5B109.2H8'A—C8'—H8'B109.5
C2—C5—H5B109.2C7'—C8'—H8'C109.5
H5A—C5—H5B107.9H8'A—C8'—H8'C109.5
C7—C6—C11118.7 (2)H8'B—C8'—H8'C109.5
C7—C6—C5120.4 (2)O10—C9'—O6124.0 (2)
C11—C6—C5120.9 (2)O10—C9'—C10'126.8 (2)
C8—C7—C6120.6 (2)O6—C9'—C10'109.2 (2)
C8—C7—H7A119.7C9'—C10'—H10B109.5
C6—C7—H7A119.7C9'—C10'—H10C109.5
C9—C8—C7120.9 (3)H10B—C10'—H10C109.5
C9—C8—H8A119.6C9'—C10'—H10D109.5
C7—C8—H8A119.6H10B—C10'—H10D109.5
C8—C9—C10118.9 (2)H10C—C10'—H10D109.5
C8—C9—H9A120.5O11—C11'—O7123.3 (2)
C10—C9—H9A120.5O11—C11'—C12'126.1 (2)
C9—C10—C11120.6 (3)O7—C11'—C12'110.57 (19)
C9—C10—H10A119.7C11'—C12'—H12A109.5
C11—C10—H10A119.7C11'—C12'—H12B109.5
C10—C11—C6120.3 (3)H12A—C12'—H12B109.5
C10—C11—H11A119.9C11'—C12'—H12C109.5
C6—C11—H11A119.9H12A—C12'—H12C109.5
O3—C1'—O4107.78 (15)H12B—C12'—H12C109.5
O3—C1'—C2'107.49 (16)O12—C13'—O8122.7 (2)
O4—C1'—C2'109.14 (14)O12—C13'—C14'126.4 (2)
O3—C1'—H1'A110.8O8—C13'—C14'110.89 (19)
O4—C1'—H1'A110.8C13'—C14'—H14A109.5
C2'—C1'—H1'A110.8C13'—C14'—H14B109.5
O5—C2'—C1'109.72 (15)H14A—C14'—H14B109.5
O5—C2'—C3'106.54 (15)C13'—C14'—H14C109.5
C1'—C2'—C3'111.08 (16)H14A—C14'—H14C109.5
O5—C2'—H2'A109.8H14B—C14'—H14C109.5
C4—O2—C1—O1176.02 (19)O3—C1'—C2'—O570.08 (18)
C4—O2—C1—C24.4 (2)O4—C1'—C2'—O5173.29 (14)
O1—C1—C2—C3154.5 (2)O3—C1'—C2'—C3'172.38 (15)
O2—C1—C2—C325.89 (19)O4—C1'—C2'—C3'55.8 (2)
O1—C1—C2—C525.2 (3)C9'—O6—C3'—C2'132.97 (19)
O2—C1—C2—C5155.26 (16)C9'—O6—C3'—C4'107.6 (2)
C1'—O3—C3—C482.37 (19)O5—C2'—C3'—O671.25 (18)
C1'—O3—C3—C2169.45 (14)C1'—C2'—C3'—O6169.29 (14)
C1—C2—C3—O379.21 (17)O5—C2'—C3'—C4'170.14 (15)
C5—C2—C3—O348.1 (2)C1'—C2'—C3'—C4'50.7 (2)
C1—C2—C3—C435.34 (18)C11'—O7—C4'—C3'108.25 (18)
C5—C2—C3—C4162.61 (17)C11'—O7—C4'—C5'131.76 (18)
C1—O2—C4—C319.3 (2)O6—C3'—C4'—O770.62 (18)
O3—C3—C4—O277.30 (19)C2'—C3'—C4'—O7171.80 (15)
C2—C3—C4—O234.09 (19)O6—C3'—C4'—C5'169.95 (14)
C1—C2—C5—C6169.70 (17)C2'—C3'—C4'—C5'52.4 (2)
C3—C2—C5—C669.8 (2)C1'—O4—C5'—C6'171.17 (16)
C2—C5—C6—C778.9 (2)C1'—O4—C5'—C4'66.61 (18)
C2—C5—C6—C1198.9 (2)O7—C4'—C5'—O4177.99 (14)
C11—C6—C7—C80.8 (3)C3'—C4'—C5'—O458.99 (19)
C5—C6—C7—C8177.1 (2)O7—C4'—C5'—C6'63.0 (2)
C6—C7—C8—C90.9 (4)C3'—C4'—C5'—C6'178.01 (16)
C7—C8—C9—C100.1 (4)C13'—O8—C6'—C5'127.09 (18)
C8—C9—C10—C111.0 (4)O4—C5'—C6'—O861.5 (2)
C9—C10—C11—C61.1 (4)C4'—C5'—C6'—O857.4 (2)
C7—C6—C11—C100.3 (3)C2'—O5—C7'—O92.1 (3)
C5—C6—C11—C10178.1 (2)C2'—O5—C7'—C8'176.30 (19)
C3—O3—C1'—O477.32 (18)C3'—O6—C9'—O103.2 (4)
C3—O3—C1'—C2'165.16 (15)C3'—O6—C9'—C10'176.3 (2)
C5'—O4—C1'—O3178.36 (14)C4'—O7—C11'—O114.8 (3)
C5'—O4—C1'—C2'65.20 (19)C4'—O7—C11'—C12'174.66 (18)
C7'—O5—C2'—C1'106.05 (19)C6'—O8—C13'—O128.6 (3)
C7'—O5—C2'—C3'133.61 (17)C6'—O8—C13'—C14'173.88 (18)
Table 1
Selected geometric parameters (Å, °)
top
O1—C11.198 (3)C8—C91.379 (5)
O2—C11.351 (3)C9—C101.388 (5)
O2—C41.451 (3)C10—C111.390 (4)
O4—C1'1.417 (2)C1'—C2'1.512 (3)
O4—C5'1.424 (2)C2'—C3'1.514 (3)
C6—C71.386 (3)C3'—C4'1.517 (3)
C6—C111.396 (3)C4'—C5'1.527 (3)
C7—C81.387 (3)
O1—C1—O2121.81 (19)C9—C10—C11120.6 (3)
C1—C2—C5115.21 (17)O3—C1'—O4107.78 (15)
O3—C3—C4109.95 (16)O4—C1'—C2'109.14 (14)
C7—C6—C5120.4 (2)C3'—C4'—C5'110.08 (15)
C9—C8—C7120.9 (3)
Acknowledgements top

The authors extend their hearty thanks to Ms Lin Ziyun and Mr Li Peng for their advice and encouragement during the work.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Corey, E. J. & Venkateswarlu, A. (1972). J. Am. Chem. Soc. 94, 6190–6191.

Du, X. M. & Irinon, N. (2008). J. Nat. Med. 62, 132–148.

Fernandez, A. M., Plaquevent, J. C. & Duhamel, L. (1997). J. Org. Chem. 62, 4007–4014.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kazumasa, H., Yoshiro, F., Shigeo, K. & Yoshikazu, T. (2000). Eur. Patent 1048662 A1.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Saito, S., Ishikawa, T., Kuroda, A., Koga, K. & Moriwake, T. (1992). Tetrahedron, 48, 4067–4086.

Schmidt, R. R. (1986). Angew. Chem. 98, 213–236.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.