organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{4-[(1H-1,2,4-Triazol-1-yl)meth­yl]benz­yl}-1H-1,2,4-triazol-4-ium perchlorate

aKey Laboratory of Fine Petrochemical Technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: hemingyangjpu@yahoo.com

(Received 1 January 2010; accepted 21 January 2010; online 6 February 2010)

In the crystal structure of the title compound, C12H13N6+·ClO4, the cation, located about an inversion center, is monoprotonated, and one H atom is disordered over two sites on N atoms of the two triazole rings, each with an occupancy factor of 0.5. The perchlorate anion has C2 symmetry, the Cl atom and one O atom lying on the twofold rotation axis; the anion is thus disordered over two sites of equal occupancy. In the cation, the triazole ring makes a dihedral angle of 84.75 (7)° with the plane of the benzene ring. In the crystal, inter­molecular N—H⋯N hydrogen bonding between the triazole and triazolium rings links the cations into a wave-like supra­molecular chain. Weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonding is also present.

Related literature

For the versatile conformations of the flexible 1,4-bis­(1,2,4-triazol-1-yl-meth­yl)benzene ligand, see: Arion et al. (2003[Arion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). Inorg. Chem. 42, 6024-6031.]); Peng et al. (2004[Peng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985-988.], 2006[Peng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des. 6, 994-998.]); Meng et al. (2004[Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528-3536.]); Li et al. (2005[Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333-2335.]); Ding et al. (2009[Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 593-601.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N6+·ClO4

  • Mr = 340.73

  • Monoclinic, C 2/c

  • a = 15.140 (5) Å

  • b = 11.362 (3) Å

  • c = 10.408 (3) Å

  • β = 124.500 (5)°

  • V = 1475.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.20 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.961

  • 4272 measured reflections

  • 1436 independent reflections

  • 1215 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.139

  • S = 1.09

  • 1436 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N3i 0.86 1.86 2.690 (5) 162
C1—H1⋯O4ii 0.93 2.54 3.445 (12) 164
C3—H3⋯O2iii 0.93 2.55 3.403 (15) 152
C4—H4A⋯O4iv 0.97 2.46 3.430 (15) 176
C6—H6⋯N2iv 0.93 2.55 3.256 (4) 133
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, there has been of great interest in the design and utilization of 1,2,4-triazole and its derivatives in coordination and biological chemistry for they represent the simple small molecular ligands. Among them, 1,4-Bis(1,2,4-triazol-1-yl-methyl)benzene (L) has attracted significant attention because of its versatile conformations arising from the flexible rotation of σ bonds of two methylene carbon atoms (Csp3) between the terminal triazole groups and the benzene ring (Arion, et al., 2003; Peng, et al., 2004, 2006; Meng, et al., 2004; Li et al., 2005; Ding, et al. 2009). To further understand the supramolecular behavior of this ligand, we report herein the crystal structure of the title compound, [C12H13N6]+.ClO4-(I).

A perspective view of (I), including the atomic numbering scheme, is shown in Figure 1. The monoprotonated cationic HL+ moiety of compound (I) crystallizes around an inversion center with a half molecule in the asymmetric unit. The anionic perchlorate is disorder over two positions related by a C2 axis, which crosses Cl1 and O3 atoms. Within each discrete tran-configurational cation, the triazole/triazolium ring makes a dihedral angle of 84.75 (7)° with the central benzene ring. Strong N—H···N interactions between triazole and triazolium groups join these cationic molecules into an infinite wavelike chain running along the crystallographic [1 0 1] direction (Figure 2). The final crystal structure results in a three-dimensional (3-D) hydrogen bonding network through the linkage of multiple C—H···N and C—H···O hydrogen bonds between the cationic subunits and perchlorate anions (Table 1).

Related literature top

For the versatile conformations of the flexible 1,4-bis(1,2,4-triazol-1-yl-methyl)benzene ligand, see: Arion et al. (2003); Peng et al. (2004, 2006); Meng et al. (2004); Li et al. (2005); Ding et al. (2009).

Experimental top

Zn(ClO4)2.6H2O (74 mg, 0.2 mmol) and 1,4-bis(1,2,4-triazol-1-yl-methyl)benzene (L) (48 mg, 0.2 mmol) was dissolved in a 8 ml ethanol-water mixture (V:V = 1:3) at room temperature. The colorless crystals were obtained after several days. Yield: 60% (based on L).

Refinement top

All hydrogen atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and Uiso(H)=1.2Ueq (C). H atom on N atom of triazolium was firstly located in a difference Fourier map and then refined with restrained N—H = 0.86 Å. It is notable that triazolium hydrogen atom was assigned to half occupancy for charge balance.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (A) -x + 1/2, -y + 1/2, -z + 1.
[Figure 2] Fig. 2. A one-dimensional hydrogen-bonding chain motif of (I).
1-{4-[(1H-1,2,4-Triazol-1-yl)methyl]benzyl}-1H- 1,2,4-triazol-4-ium perchlorate top
Crystal data top
C12H13N6+·ClO4F(000) = 704
Mr = 340.73Dx = 1.534 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1942 reflections
a = 15.140 (5) Åθ = 2.4–27.5°
b = 11.362 (3) ŵ = 0.29 mm1
c = 10.408 (3) ÅT = 297 K
β = 124.500 (5)°Block, colorless
V = 1475.5 (7) Å30.20 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1436 independent reflections
Radiation source: fine-focus sealed tube1215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1218
Tmin = 0.944, Tmax = 0.961k = 1313
4272 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0491P)2 + 2.663P]
where P = (Fo2 + 2Fc2)/3
1436 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C12H13N6+·ClO4V = 1475.5 (7) Å3
Mr = 340.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.140 (5) ŵ = 0.29 mm1
b = 11.362 (3) ÅT = 297 K
c = 10.408 (3) Å0.20 × 0.15 × 0.14 mm
β = 124.500 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1436 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1215 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.961Rint = 0.021
4272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
1436 reflectionsΔρmin = 0.61 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3304 (2)0.1668 (2)0.5558 (3)0.0423 (6)
H10.38480.11120.59290.051*
C20.27311 (19)0.1755 (2)0.6225 (3)0.0388 (5)
C30.19301 (19)0.2594 (2)0.5662 (3)0.0417 (6)
H30.15450.26650.61060.050*
C40.3004 (2)0.0963 (3)0.7575 (3)0.0526 (7)
H4A0.35780.04330.77990.063*
H4B0.32600.14410.84940.063*
C60.1572 (2)0.0310 (2)0.7933 (3)0.0495 (6)
H60.17350.08090.87480.059*
C50.0862 (2)0.0993 (2)0.6166 (3)0.0471 (6)
H50.04030.15880.55140.057*
N10.20807 (16)0.02713 (17)0.7242 (2)0.0416 (5)
N20.16400 (17)0.05709 (19)0.6103 (2)0.0466 (5)
N30.07910 (18)0.0479 (2)0.7274 (3)0.0506 (6)
H3A0.03380.06300.75010.061*0.50
Cl10.50000.16865 (9)0.25000.0749 (4)
O10.3684 (4)0.1843 (5)0.1366 (6)0.0902 (16)0.50
O20.5109 (9)0.1370 (12)0.1316 (12)0.136 (5)0.50
O30.50000.2786 (5)0.25000.254 (5)
O40.5108 (10)0.0799 (8)0.3416 (13)0.122 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0410 (12)0.0427 (13)0.0453 (13)0.0003 (10)0.0257 (11)0.0002 (10)
C20.0408 (12)0.0412 (12)0.0334 (11)0.0083 (10)0.0203 (10)0.0022 (9)
C30.0451 (13)0.0479 (13)0.0432 (13)0.0057 (10)0.0316 (11)0.0048 (10)
C40.0472 (14)0.0639 (17)0.0379 (13)0.0091 (13)0.0188 (11)0.0072 (12)
C60.0652 (17)0.0506 (14)0.0467 (14)0.0094 (13)0.0400 (13)0.0098 (11)
C50.0482 (14)0.0473 (14)0.0451 (13)0.0006 (11)0.0260 (12)0.0074 (11)
N10.0500 (11)0.0451 (11)0.0342 (10)0.0005 (9)0.0266 (9)0.0069 (8)
N20.0533 (12)0.0522 (12)0.0382 (10)0.0024 (10)0.0283 (10)0.0015 (9)
N30.0535 (13)0.0567 (13)0.0569 (13)0.0105 (11)0.0405 (11)0.0181 (11)
Cl10.1341 (12)0.0393 (5)0.0914 (9)0.0000.0878 (9)0.000
O10.049 (2)0.122 (4)0.085 (3)0.014 (3)0.030 (3)0.006 (3)
O20.096 (6)0.252 (15)0.073 (4)0.022 (8)0.055 (4)0.004 (7)
O30.283 (10)0.061 (3)0.401 (14)0.0000.183 (10)0.000
O40.129 (7)0.105 (6)0.120 (7)0.012 (5)0.064 (6)0.061 (5)
Geometric parameters (Å, º) top
C1—C21.388 (3)C5—N31.350 (3)
C1—C3i1.389 (3)C5—H50.9300
C1—H10.9300N1—N21.367 (3)
C2—C31.385 (3)N3—H3A0.8600
C2—C41.515 (3)Cl1—O31.249 (5)
C3—C1i1.389 (3)Cl1—O4ii1.333 (8)
C3—H30.9300Cl1—O41.333 (8)
C4—N11.464 (3)Cl1—O21.381 (9)
C4—H4A0.9700Cl1—O2ii1.381 (9)
C4—H4B0.9700Cl1—O1ii1.653 (5)
C6—N11.319 (3)Cl1—O11.653 (4)
C6—N31.324 (4)O2—O4ii0.843 (13)
C6—H60.9300O4—O2ii0.843 (13)
C5—N21.308 (3)O4—O4ii1.74 (2)
C2—C1—C3i120.4 (2)C6—N3—H3A127.6
C2—C1—H1119.8C5—N3—H3A127.6
C3i—C1—H1119.8O3—Cl1—O4ii139.2 (5)
C3—C2—C1118.9 (2)O3—Cl1—O4139.2 (5)
C3—C2—C4121.0 (2)O4ii—Cl1—O481.7 (10)
C1—C2—C4120.1 (2)O3—Cl1—O2105.1 (5)
C2—C3—C1i120.7 (2)O4—Cl1—O2114.4 (8)
C2—C3—H3119.6O3—Cl1—O2ii105.1 (5)
C1i—C3—H3119.6O4ii—Cl1—O2ii114.4 (8)
N1—C4—C2112.1 (2)O2—Cl1—O2ii149.8 (11)
N1—C4—H4A109.2O3—Cl1—O1ii83.8 (2)
C2—C4—H4A109.2O4ii—Cl1—O1ii101.6 (6)
N1—C4—H4B109.2O4—Cl1—O1ii87.8 (6)
C2—C4—H4B109.2O2—Cl1—O1ii87.7 (5)
H4A—C4—H4B107.9O2ii—Cl1—O1ii95.5 (5)
N1—C6—N3108.7 (2)O3—Cl1—O183.8 (2)
N1—C6—H6125.6O4ii—Cl1—O187.8 (6)
N3—C6—H6125.6O4—Cl1—O1101.6 (6)
N2—C5—N3113.2 (2)O2—Cl1—O195.5 (5)
N2—C5—H5123.4O2ii—Cl1—O187.7 (5)
N3—C5—H5123.4O1ii—Cl1—O1167.6 (4)
C6—N1—N2110.3 (2)O4ii—O2—Cl168.8 (9)
C6—N1—C4128.9 (2)O2ii—O4—Cl175.0 (11)
N2—N1—C4120.8 (2)O2ii—O4—O4ii119.7 (14)
C5—N2—N1103.0 (2)Cl1—O4—O4ii49.2 (5)
C6—N3—C5104.8 (2)
C3i—C1—C2—C30.5 (4)O3—Cl1—O2—O4ii163.6 (14)
C3i—C1—C2—C4178.9 (2)O4—Cl1—O2—O4ii27 (2)
C1—C2—C3—C1i0.5 (4)O2ii—Cl1—O2—O4ii16.4 (14)
C4—C2—C3—C1i178.8 (2)O1ii—Cl1—O2—O4ii113.4 (15)
C3—C2—C4—N158.5 (3)O1—Cl1—O2—O4ii78.6 (15)
C1—C2—C4—N1123.1 (3)O3—Cl1—O4—O2ii25 (2)
N3—C6—N1—N20.7 (3)O4ii—Cl1—O4—O2ii155 (2)
N3—C6—N1—C4179.2 (2)O2—Cl1—O4—O2ii171.0 (9)
C2—C4—N1—C6115.6 (3)O1ii—Cl1—O4—O2ii102.5 (15)
C2—C4—N1—N266.0 (3)O1—Cl1—O4—O2ii69.4 (15)
N3—C5—N2—N10.5 (3)O3—Cl1—O4—O4ii180.000 (3)
C6—N1—N2—C50.7 (3)O2—Cl1—O4—O4ii15.6 (12)
C4—N1—N2—C5179.3 (2)O2ii—Cl1—O4—O4ii155 (2)
N1—C6—N3—C50.3 (3)O1ii—Cl1—O4—O4ii102.1 (6)
N2—C5—N3—C60.1 (3)O1—Cl1—O4—O4ii86.0 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N3iii0.861.862.690 (5)162
C1—H1···O4iv0.932.543.445 (12)164
C3—H3···O2v0.932.553.403 (15)152
C4—H4A···O4vi0.972.463.430 (15)176
C6—H6···N2vi0.932.553.256 (4)133
Symmetry codes: (iii) x, y, z+3/2; (iv) x+1, y, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H13N6+·ClO4
Mr340.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)15.140 (5), 11.362 (3), 10.408 (3)
β (°) 124.500 (5)
V3)1475.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.20 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.944, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
4272, 1436, 1215
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.139, 1.09
No. of reflections1436
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.61

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N3i0.861.862.690 (5)162
C1—H1···O4ii0.932.543.445 (12)164
C3—H3···O2iii0.932.553.403 (15)152
C4—H4A···O4iv0.972.463.430 (15)176
C6—H6···N2iv0.932.553.256 (4)133
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1/2.
 

References

First citationArion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). Inorg. Chem. 42, 6024–6031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 593–601.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333–2335.  Web of Science CSD CrossRef Google Scholar
First citationMeng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des. 6, 994–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985–988.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds