organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N-[3-(N,N-di­methyl­carbamo­yl)pyridin-2-ylsulfon­yl]carbamate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hljusunzhizhong@163.com

(Received 29 January 2010; accepted 21 February 2010; online 27 February 2010)

In the mol­ecular structure of the title compound, C11H15N3O5S, the amide group is nearly perpendicular to the pyridine ring, making a dihedral angle of 86.30 (13)°. The terminal ethyl group is disordered over two sites of equal occupancy. Inter­molecular N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

The title compound is used in the preparation of nicosulfuron, a member of the sulfonyl­urea family of herbicides, see: Green & Ulrich (1993[Green, J. M. & Ulrich, J. F. (1993). Weed Sci.. 41, 508-516.]). For the synthesis, see: Murai et al. (1992[Murai, S., Nakamura, Y., Akagi, T., Sakashita, T. & Haga, T. (1992). Synthesis and Chemistry of Agrochemicals III, ACS Symposium Series, Vol. 504, edited by D. R., Baker, J. G. Fenyes & J. J. Steffens, pp. 43-55. Washington: American Chemical Society.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O5S

  • Mr = 301.32

  • Monoclinic, P 21 /n

  • a = 8.4370 (11) Å

  • b = 11.1141 (15) Å

  • c = 15.074 (2) Å

  • β = 100.594 (2)°

  • V = 1389.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.17 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.963

  • 7979 measured reflections

  • 3036 independent reflections

  • 2384 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.04

  • 3036 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.87 (2) 1.91 (3) 2.773 (2) 172 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The ethyl 3-(dimethylcarbamoyl)pyridin-2-ylsulfonylcarbamate is used for preparation of nicosulfuron, which is a member of the sulfonylurea family of herbicides (Green et al., 1993).

The molecular structure is shown in Fig. 1. In the molecular structure the amide group is nearly perpendicular to the pyridine ring, the dihedral angle being 86.30 (13)°. Intermolecular N—H···O hydrogen bonding (Table 1) helps to stabilize the crystal structure.

Related literature top

Thetitle compound is used in the preparation of nicosulfuron, a member of the sulfonylurea family of herbicides, see: Green & Ulrich (1993). For the synthesis, see: Murai et al. (1992).

Experimental top

To a solution of N,N-dimethyl-2-sulfamoylnicotinamide (10 mmol) and NaOH (12 mmol) in anhydrous toluene (50 ml) was added ethyl carbonochloridate (12 mmol). After stirring the mixture for 10 h at room temperature, the solvent was removed and 100 ml water was added. The oil after separation was concentrated under reduced pressure and the residue was recrystallized from methanol to give the title compound in a yield of 90% (Murai et al. 1992). Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from ethanol at room temperature in a yield of 60%. Analysis found: C 43.9, H 4.9, N 13.9%; C11H15N3O5S requires: C 43.9, H 5.0, N 14.0%.

Refinement top

The ethyl group is disordered over two positions with 0.5 occupancy for each component. In the refinement. Imino H atom was located in a difference Fourier map and was refined isotropically. Other H atoms were placed in idealized positions with C—H = 0.96 (methyl), 0.97 (methylene) and 0.93 Å (aromatic), and refined in the riding-model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The disorder is shown.
[Figure 2] Fig. 2. A part of packing of the crystal structure of the title compound, viewed down the a direction. Dashed lines indicate hydrogen bonds.
Ethyl N-[3-(N,N-dimethylcarbamoyl)pyridin-2-ylsulfonyl]carbamate top
Crystal data top
C11H15N3O5SF(000) = 632
Mr = 301.32Dx = 1.441 Mg m3
Monoclinic, P21/nMelting point = 436–437 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.4370 (11) ÅCell parameters from 2785 reflections
b = 11.1141 (15) Åθ = 2.3–26.9°
c = 15.074 (2) ŵ = 0.26 mm1
β = 100.594 (2)°T = 296 K
V = 1389.4 (3) Å3Prism, colorless
Z = 40.17 × 0.16 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3036 independent reflections
Radiation source: fine-focus sealed tube2384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.958, Tmax = 0.963k = 1314
7979 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
3036 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C11H15N3O5SV = 1389.4 (3) Å3
Mr = 301.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4370 (11) ŵ = 0.26 mm1
b = 11.1141 (15) ÅT = 296 K
c = 15.074 (2) Å0.17 × 0.16 × 0.15 mm
β = 100.594 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2384 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.963Rint = 0.026
7979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
3036 reflectionsΔρmin = 0.47 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.81078 (6)0.56615 (4)0.24067 (3)0.03700 (17)
O11.05540 (17)0.28321 (14)0.28830 (10)0.0475 (4)
O20.97802 (19)0.58254 (14)0.27370 (11)0.0526 (4)
O30.7045 (2)0.54186 (15)0.30175 (11)0.0554 (4)
O40.90004 (19)0.68423 (15)0.08036 (11)0.0539 (4)
O50.6813 (2)0.80460 (14)0.06652 (12)0.0552 (4)
N10.6502 (2)0.45464 (16)0.10014 (12)0.0432 (4)
N21.19984 (19)0.39369 (16)0.20603 (12)0.0407 (4)
N30.7342 (2)0.68519 (15)0.18467 (12)0.0379 (4)
H30.641 (3)0.709 (2)0.1945 (16)0.045 (6)*
C10.6257 (3)0.37404 (19)0.03341 (15)0.0480 (5)
H1A0.52890.37640.00760.058*
C20.7368 (3)0.28809 (19)0.02256 (15)0.0490 (5)
H2A0.71620.23400.02530.059*
C30.8789 (3)0.28309 (19)0.08340 (15)0.0434 (5)
H3A0.95430.22390.07780.052*
C40.9110 (2)0.36615 (16)0.15349 (12)0.0315 (4)
C50.7912 (2)0.45025 (16)0.15719 (12)0.0313 (4)
C61.0625 (2)0.34801 (17)0.22302 (13)0.0341 (4)
C71.2086 (3)0.4806 (2)0.13467 (18)0.0538 (6)
H7A1.10290.49290.09950.081*
H7B1.27900.45050.09650.081*
H7C1.24980.55550.16100.081*
C81.3496 (3)0.3661 (3)0.26777 (18)0.0624 (7)
H8A1.32930.30650.31050.094*
H8B1.39070.43780.29930.094*
H8C1.42730.33570.23420.094*
C90.7842 (2)0.72299 (17)0.10698 (14)0.0381 (4)
C10A0.698 (2)0.8377 (11)0.0234 (15)0.068 (3)0.50
H10A0.59430.85910.05910.082*0.50
H10B0.74280.77150.05280.082*0.50
C11A0.8134 (12)0.9468 (6)0.0135 (5)0.0974 (19)0.50
H11A0.81500.98060.07200.146*0.50
H11B0.92010.92120.01330.146*0.50
H11C0.77681.00630.02420.146*0.50
C10B0.734 (2)0.8705 (11)0.0110 (16)0.068 (3)0.50
H10C0.84570.89530.00460.082*0.50
H10D0.72030.82050.06460.082*0.50
C11B0.6287 (12)0.9729 (6)0.0249 (5)0.0974 (19)0.50
H11D0.66251.02590.06820.146*0.50
H11E0.63301.01470.03120.146*0.50
H11F0.52030.94660.04710.146*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0368 (3)0.0411 (3)0.0317 (3)0.0050 (2)0.00264 (19)0.00259 (19)
O10.0327 (8)0.0603 (9)0.0480 (9)0.0012 (7)0.0035 (6)0.0214 (7)
O20.0417 (9)0.0563 (9)0.0520 (10)0.0039 (7)0.0116 (7)0.0142 (7)
O30.0664 (11)0.0635 (10)0.0407 (9)0.0091 (8)0.0214 (8)0.0056 (7)
O40.0500 (10)0.0582 (10)0.0589 (10)0.0103 (8)0.0243 (8)0.0051 (8)
O50.0601 (11)0.0493 (9)0.0592 (10)0.0162 (8)0.0191 (8)0.0155 (8)
N10.0331 (9)0.0446 (10)0.0461 (10)0.0040 (7)0.0076 (7)0.0011 (8)
N20.0248 (8)0.0466 (9)0.0516 (10)0.0009 (7)0.0094 (7)0.0087 (8)
N30.0364 (9)0.0384 (9)0.0401 (9)0.0081 (7)0.0098 (7)0.0021 (7)
C10.0455 (12)0.0434 (12)0.0472 (12)0.0058 (10)0.0125 (10)0.0005 (10)
C20.0632 (15)0.0402 (11)0.0406 (12)0.0055 (10)0.0010 (10)0.0050 (9)
C30.0483 (12)0.0385 (10)0.0444 (11)0.0060 (9)0.0115 (10)0.0015 (9)
C40.0283 (9)0.0337 (9)0.0334 (9)0.0000 (7)0.0079 (7)0.0058 (7)
C50.0280 (9)0.0332 (9)0.0316 (9)0.0002 (7)0.0025 (7)0.0013 (7)
C60.0274 (9)0.0363 (9)0.0390 (10)0.0040 (7)0.0071 (8)0.0045 (8)
C70.0412 (13)0.0582 (14)0.0667 (16)0.0022 (10)0.0219 (11)0.0172 (12)
C80.0280 (11)0.0805 (18)0.0759 (17)0.0020 (11)0.0024 (11)0.0118 (14)
C90.0383 (11)0.0310 (9)0.0453 (11)0.0002 (8)0.0087 (9)0.0025 (8)
C10A0.083 (7)0.044 (6)0.083 (6)0.002 (4)0.030 (5)0.026 (6)
C11A0.170 (6)0.059 (2)0.069 (3)0.005 (3)0.036 (4)0.007 (2)
C10B0.083 (7)0.044 (6)0.083 (6)0.002 (4)0.030 (5)0.026 (6)
C11B0.170 (6)0.059 (2)0.069 (3)0.005 (3)0.036 (4)0.007 (2)
Geometric parameters (Å, º) top
S1—O21.4191 (16)C3—H3A0.9300
S1—O31.4241 (16)C4—C51.385 (3)
S1—N31.6369 (18)C4—C61.510 (3)
S1—C51.7871 (19)C7—H7A0.9600
O1—C61.230 (2)C7—H7B0.9600
O4—C91.202 (2)C7—H7C0.9600
O5—C91.324 (2)C8—H8A0.9600
O5—C10A1.44 (2)C8—H8B0.9600
O5—C10B1.51 (2)C8—H8C0.9600
N1—C11.334 (3)C10A—C11A1.544 (11)
N1—C51.335 (2)C10A—H10A0.9700
N2—C61.332 (2)C10A—H10B0.9700
N2—C71.458 (3)C11A—H11A0.9600
N2—C81.457 (3)C11A—H11B0.9600
N3—C91.381 (3)C11A—H11C0.9600
N3—H30.87 (2)C10B—C11B1.434 (19)
C1—C21.369 (3)C10B—H10C0.9700
C1—H1A0.9300C10B—H10D0.9700
C2—C31.370 (3)C11B—H11D0.9600
C2—H2A0.9300C11B—H11E0.9600
C3—C41.392 (3)C11B—H11F0.9600
O2—S1—O3120.07 (11)N2—C7—H7A109.5
O2—S1—N3110.48 (10)N2—C7—H7B109.5
O3—S1—N3104.54 (9)H7A—C7—H7B109.5
O2—S1—C5107.25 (9)N2—C7—H7C109.5
O3—S1—C5109.34 (10)H7A—C7—H7C109.5
N3—S1—C5104.06 (9)H7B—C7—H7C109.5
C9—O5—C10A116.1 (8)N2—C8—H8A109.5
C9—O5—C10B115.3 (7)N2—C8—H8B109.5
C10A—O5—C10B18.8 (10)H8A—C8—H8B109.5
C1—N1—C5117.19 (18)N2—C8—H8C109.5
C6—N2—C7123.95 (18)H8A—C8—H8C109.5
C6—N2—C8118.64 (18)H8B—C8—H8C109.5
C7—N2—C8117.07 (18)O4—C9—O5126.6 (2)
C9—N3—S1122.01 (14)O4—C9—N3124.59 (19)
C9—N3—H3118.8 (16)O5—C9—N3108.80 (17)
S1—N3—H3116.1 (16)O5—C10A—C11A106.2 (12)
N1—C1—C2123.0 (2)O5—C10A—H10A110.5
N1—C1—H1A118.5C11A—C10A—H10A110.5
C2—C1—H1A118.5O5—C10A—H10B110.5
C1—C2—C3118.8 (2)C11A—C10A—H10B110.5
C1—C2—H2A120.6H10A—C10A—H10B108.7
C3—C2—H2A120.6C11B—C10B—O5103.6 (13)
C2—C3—C4120.37 (19)C11B—C10B—H10C111.0
C2—C3—H3A119.8O5—C10B—H10C111.0
C4—C3—H3A119.8C11B—C10B—H10D111.0
C5—C4—C3115.90 (18)O5—C10B—H10D111.0
C5—C4—C6126.36 (17)H10C—C10B—H10D109.0
C3—C4—C6117.39 (17)C10B—C11B—H11D109.5
N1—C5—C4124.70 (17)C10B—C11B—H11E109.5
N1—C5—S1112.53 (14)H11D—C11B—H11E109.5
C4—C5—S1122.77 (14)C10B—C11B—H11F109.5
O1—C6—N2123.32 (18)H11D—C11B—H11F109.5
O1—C6—C4118.27 (16)H11E—C11B—H11F109.5
N2—C6—C4118.10 (17)
O2—S1—N3—C962.57 (18)N3—S1—C5—C4138.92 (16)
O3—S1—N3—C9166.94 (17)C7—N2—C6—O1173.2 (2)
C5—S1—N3—C952.26 (18)C8—N2—C6—O10.1 (3)
C5—N1—C1—C20.9 (3)C7—N2—C6—C413.3 (3)
N1—C1—C2—C30.9 (4)C8—N2—C6—C4173.57 (19)
C1—C2—C3—C41.7 (3)C5—C4—C6—O185.0 (3)
C2—C3—C4—C50.7 (3)C3—C4—C6—O187.8 (2)
C2—C3—C4—C6174.29 (19)C5—C4—C6—N2101.2 (2)
C1—N1—C5—C42.0 (3)C3—C4—C6—N286.0 (2)
C1—N1—C5—S1177.97 (16)C10A—O5—C9—O48.8 (6)
C3—C4—C5—N11.2 (3)C10B—O5—C9—O412.0 (7)
C6—C4—C5—N1171.70 (18)C10A—O5—C9—N3169.1 (6)
C3—C4—C5—S1178.77 (14)C10B—O5—C9—N3170.0 (7)
C6—C4—C5—S18.3 (3)S1—N3—C9—O410.6 (3)
O2—S1—C5—N1158.18 (15)S1—N3—C9—O5167.38 (14)
O3—S1—C5—N170.14 (16)C9—O5—C10A—C11A91.5 (10)
N3—S1—C5—N141.09 (16)C10B—O5—C10A—C11A1 (4)
O2—S1—C5—C421.83 (18)C9—O5—C10B—C11B164.2 (7)
O3—S1—C5—C4109.86 (17)C10A—O5—C10B—C11B99 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)1.91 (3)2.773 (2)172 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H15N3O5S
Mr301.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.4370 (11), 11.1141 (15), 15.074 (2)
β (°) 100.594 (2)
V3)1389.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.17 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
7979, 3036, 2384
Rint0.026
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.04
No. of reflections3036
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.87 (2)1.91 (3)2.773 (2)172 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University of China for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGreen, J. M. & Ulrich, J. F. (1993). Weed Sci.. 41, 508-516.  CAS Google Scholar
First citationMurai, S., Nakamura, Y., Akagi, T., Sakashita, T. & Haga, T. (1992). Synthesis and Chemistry of Agrochemicals III, ACS Symposium Series, Vol. 504, edited by D. R., Baker, J. G. Fenyes & J. J. Steffens, pp. 43–55. Washington: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds