metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-κ2N,N′)(sulfato-κ2O,O′)cobalt(II) propane-1,3-diol solvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 16 December 2009; accepted 28 January 2010; online 3 February 2010)

The title compound, [Co(SO4)(C12H8N2)2]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen) and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octa­hedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8)°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent mol­ecule. Inter­molecular O—H⋯O hydrogen bonds help to stabilize the structure.

Related literature

For related cobalt compounds with monodentate, bidentate-bridging sulfate ligands, see: Hennig et al. (1975[Hennig, H., Benedix, R., Hempel, K. & Reinhold, J. (1975). Z. Anorg. Allg. Chem. 412, 141-147.]); Li & Zhou (1987[Li, J. M. & Zhou, K. J. (1987). Jiegou Huaxue, 6, 198-200.]); Song et al. (2008[Song, A.-R., Hwang, I.-C. & Ha, K. (2008). Acta Cryst. E64, m44.]); Zheng & Lin (2003[Zheng, Y. Q. & Lin, J. L. (2003). Z. Anorg. Allg. Chem. 629, 185-187.]). For related complexes with bidentate-chelating ligands, see: Lu et al. (2006[Lu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891-m893.]); Paul et al. (2002[Paul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859-3867.]); Wang et al. (2009[Wang, Y.-R., Hu, Y.-S., Shi, C.-L., Li, D.-P. & Li, Y.-F. (2009). Acta Cryst. E65, m789-m790.]). For an isostructural structure, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]). For a related structure, see: Chen et al. (2005[Chen, J.-M., Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1724-m1726.]). For applications of transition metal complexes of phen, see: Li et al. (2004[Li, F., Ma, Y.-G., Liu, S.-Y. & Shen, J.-C. (2004). Appl. Phys. Lett. 84, 148-150.]); Wang et al. (2000[Wang, Z.-M., Zhou, Z.-F. & Lin, H.-K. (2000). Chin. J. Inorg. Chem. 16, 267-272.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(SO4)(C12H8N2)2]·C3H8O2

  • Mr = 591.49

  • Monoclinic, C 2/c

  • a = 18.285 (4) Å

  • b = 12.422 (3) Å

  • c = 13.211 (3) Å

  • β = 121.82 (3)°

  • V = 2549.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 223 K

  • 0.60 × 0.40 × 0.34 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB: Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.823, Tmax = 1.000

  • 7099 measured reflections

  • 2898 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.06

  • 2898 reflections

  • 183 parameters

  • 21 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2 0.82 1.92 2.737 (3) 179

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic complexes have been widely applied in fields of research and production because of their capability of showing novel optical, electronical, magnetical properties. M-phen transition metal complexes (phen = phenantroline) possess important actions in the areas of extraction, plating, bio-inorganic chemistry, analytical chemistry and functional materials (Wang et al., 2000; Li et al., 2004).

Although many transtion metal complexes with sulfate ions as monodentate, bidentate and bidentate-bridging ligands have been structurally characterized (Hennig et al., 1975; Zheng & Lin, 2003; Song et al., 2008), as far as we know, the reports on complexes with bidentate-chelating sulfate ligands are few (Paul et al., 2002; Lu et al., 2006; Wang et al., 2009). Here, we report the crystal structure of the new complex [CoSO4(C12H8N2)2].C3H8O2 unexpectedly obtained during an attempt to synthesize a mixed-ligand complex of cobalt with phen and melamine via a solvothermal reaction, which is analogue with a previously reported CoII complex (Zhong et al., 2006).

In the crystal structure of the title complex, the CoII metal ion is six-coordinated in a distorted octahedral environement by four N atoms from two chelating phen ligands and two O atoms from a bidentate-chelating sulfate ligand (Fig. 1). The Co—O bond distance [2.1323 (15) Å], the O—Co—O bite angle [66.54 (8)°], the Co—N bond distances [2.1295 (16)–2.1341 (17) Å] and the N—Co—N bite angle [77.99 (6)°] are very similar to those seen in the previously reported cobalt complex [CoSO4(C12H8N2)2].C2H6O2 (II)[Zhong et al., 2006]. The dihedral angle between the two chelating N2C2 groups is 80.06 (8)°, this is larger than that found in (II) [70.16 (6)°]. A twofold rotation axis (symmetry code: -x + 1, y, - z + 1/2) passes through the Co and S atoms, and also through the mid-carbon of the propane-1,3-diol solvent molecule. The crystal structure is further stabilized by intermolecular O3—H3B···O2 hydrogen bonds (Fig. 1 and Table 1).

Related literature top

For related cobalt compounds with monodentate, bidentate-bridging sulfate ligands, see: Hennig et al. (1975); Li et al. (1987); Song et al. (2008); Zheng & Lin (2003). For related complexes with bidentate-chelating ligands, see: Lu et al. (2006); Paul et al. (2002); Wang et al. (2009). For an isostructural structure, see: Zhong et al. (2006). For a related structure, see: Chen et al. (2005). For applications of transition metal complexes of phen, see: Li et al. (2004); Wang et al. (2000).

Experimental top

Red prism-shaped crystals of the title compound was unexpectedly obtained as a by-product during an attempt to synthesize a mixed-ligand cobalt complex with phen and melamine via a propane-1,3-diol/water solvothermal reaction. 0.2 mmol phen, 0.1 mmol melamine, 0.1 mmol CoSO4.7H2O, 2.0 ml 1,3-propanediol and 1.0 ml water were mixed and placed in a thick Pyrex tube, which was sealed and heated to 413 K for 96 h, whereupon red-prisms of the title complex were obtained.

Refinement top

The non-H atoms were refined anisotropically. The H atoms of phen were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of central C atom of propane-1,3-diol were constrained, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C), whereas other H atoms were placed in geometrically idealized positions and refined as riding atoms, with C—H = 0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. The dashed lines represent O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator (-x + 1, y, - z + 1/2).
Bis(1,10-phenanthroline-κ2N,N')(sulfato- κ2O,O')cobalt(II) propane-1,3-diol solvate top
Crystal data top
[Co(SO4)(C12H8N2)2]·C3H8O2F(000) = 1220
Mr = 591.49Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3592 reflections
a = 18.285 (4) Åθ = 3.2–27.5°
b = 12.422 (3) ŵ = 0.81 mm1
c = 13.211 (3) ÅT = 223 K
β = 121.82 (3)°Prism, red
V = 2549.7 (13) Å30.60 × 0.40 × 0.34 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2898 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2323
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
k = 1613
Tmin = 0.823, Tmax = 1.000l = 1714
7099 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0504P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.72 e Å3
183 parametersΔρmin = 0.45 e Å3
21 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (6)
Crystal data top
[Co(SO4)(C12H8N2)2]·C3H8O2V = 2549.7 (13) Å3
Mr = 591.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.285 (4) ŵ = 0.81 mm1
b = 12.422 (3) ÅT = 223 K
c = 13.211 (3) Å0.60 × 0.40 × 0.34 mm
β = 121.82 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(REQAB: Jacobson, 1998)
2540 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 1.000Rint = 0.021
7099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03821 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.72 e Å3
2898 reflectionsΔρmin = 0.45 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.81835 (3)0.25000.02201 (14)
S10.50001.03618 (5)0.25000.02331 (17)
O10.44793 (9)0.96187 (12)0.14805 (12)0.0329 (3)
C110.34382 (12)0.68292 (14)0.14757 (16)0.0224 (4)
N20.40420 (10)0.71189 (13)0.12195 (14)0.0238 (3)
C100.39507 (13)0.67410 (16)0.02169 (18)0.0284 (4)
H10A0.43560.69350.00280.034*
C80.26687 (13)0.57717 (16)0.03144 (17)0.0304 (4)
H8A0.22130.53280.08320.036*
O20.55612 (10)1.10269 (14)0.22920 (16)0.0446 (4)
C60.21399 (13)0.58852 (17)0.10868 (18)0.0310 (4)
H6A0.16790.54340.06040.037*
C120.35267 (11)0.72718 (15)0.25388 (16)0.0223 (4)
C70.27424 (12)0.61511 (16)0.07446 (17)0.0264 (4)
C40.29234 (12)0.69936 (16)0.28497 (17)0.0270 (4)
C90.32726 (14)0.60646 (18)0.05671 (18)0.0331 (4)
H9A0.32350.58170.12570.040*
C50.22322 (12)0.62810 (18)0.21042 (18)0.0322 (5)
H5A0.18410.60860.23190.039*
N10.41806 (10)0.79727 (13)0.31789 (14)0.0250 (3)
C10.42581 (13)0.84107 (17)0.41526 (18)0.0291 (4)
H1A0.47060.88920.45970.035*
C20.36899 (14)0.81726 (18)0.45310 (19)0.0335 (5)
H2A0.37620.84910.52150.040*
C30.30319 (13)0.74709 (18)0.38888 (18)0.0335 (5)
H3A0.26530.73060.41350.040*
O30.56334 (16)1.31539 (16)0.1809 (2)0.0659 (6)
H3B0.56101.25140.19440.099*
C140.50001.4456 (3)0.25000.0562 (10)
C130.5774 (2)1.3764 (3)0.2780 (3)0.0723 (9)
H13A0.62681.42270.30330.087*
H13B0.59071.32860.34360.087*
H140.496 (3)1.442 (4)0.174 (2)0.143 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0211 (2)0.0208 (2)0.0239 (2)0.0000.01172 (16)0.000
S10.0212 (3)0.0200 (3)0.0303 (3)0.0000.0146 (3)0.000
O10.0315 (7)0.0277 (8)0.0270 (7)0.0012 (6)0.0068 (6)0.0011 (6)
C110.0222 (9)0.0193 (9)0.0227 (9)0.0027 (7)0.0098 (7)0.0026 (7)
N20.0253 (8)0.0218 (8)0.0254 (8)0.0006 (6)0.0141 (7)0.0004 (6)
C100.0334 (10)0.0272 (11)0.0284 (10)0.0004 (8)0.0189 (9)0.0014 (8)
C80.0306 (10)0.0278 (11)0.0241 (9)0.0033 (8)0.0085 (8)0.0045 (8)
O20.0435 (9)0.0362 (9)0.0676 (12)0.0093 (8)0.0386 (9)0.0028 (8)
C60.0243 (9)0.0314 (11)0.0298 (10)0.0075 (8)0.0092 (8)0.0014 (8)
C120.0202 (8)0.0222 (9)0.0218 (8)0.0026 (7)0.0092 (7)0.0028 (7)
C70.0251 (9)0.0245 (10)0.0247 (9)0.0007 (8)0.0098 (8)0.0020 (7)
C40.0251 (9)0.0291 (10)0.0271 (9)0.0023 (8)0.0139 (8)0.0045 (8)
C90.0397 (11)0.0332 (11)0.0252 (9)0.0002 (9)0.0162 (9)0.0043 (8)
C50.0259 (9)0.0382 (12)0.0328 (10)0.0041 (9)0.0157 (8)0.0046 (9)
N10.0249 (8)0.0252 (8)0.0253 (8)0.0004 (6)0.0135 (7)0.0008 (6)
C10.0304 (10)0.0283 (11)0.0270 (9)0.0003 (8)0.0140 (8)0.0050 (8)
C20.0409 (12)0.0361 (12)0.0282 (10)0.0029 (9)0.0213 (10)0.0025 (8)
C30.0347 (10)0.0419 (13)0.0318 (10)0.0004 (9)0.0229 (9)0.0030 (9)
O30.1116 (18)0.0412 (11)0.0867 (15)0.0012 (11)0.0808 (15)0.0034 (10)
C140.085 (3)0.0301 (18)0.068 (3)0.0000.050 (2)0.000
C130.077 (2)0.072 (2)0.069 (2)0.0252 (18)0.0392 (17)0.0071 (17)
Geometric parameters (Å, º) top
Co1—N1i2.1295 (16)C6—C71.432 (3)
Co1—N12.1295 (16)C6—H6A0.9300
Co1—O1i2.1323 (15)C12—N11.355 (3)
Co1—O12.1323 (15)C12—C41.408 (3)
Co1—N22.1341 (17)C4—C31.410 (3)
Co1—N2i2.1341 (17)C4—C51.428 (3)
Co1—S12.7058 (9)C9—H9A0.9300
S1—O21.4519 (15)C5—H5A0.9300
S1—O2i1.4519 (15)N1—C11.334 (3)
S1—O11.4901 (15)C1—C21.401 (3)
S1—O1i1.4901 (15)C1—H1A0.9300
C11—N21.363 (2)C2—C31.360 (3)
C11—C71.402 (3)C2—H2A0.9300
C11—C121.436 (3)C3—H3A0.9300
N2—C101.330 (2)O3—C131.392 (3)
C10—C91.401 (3)O3—H3B0.8200
C10—H10A0.9300C14—C13i1.525 (4)
C8—C91.361 (3)C14—C131.525 (4)
C8—C71.414 (3)C14—H140.97 (3)
C8—H8A0.9300C13—H13A0.9700
C6—C51.356 (3)C13—H13B0.9700
N1i—Co1—N1165.87 (9)C9—C8—H8A120.4
N1i—Co1—O1i100.94 (6)C7—C8—H8A120.4
N1—Co1—O1i90.91 (6)C5—C6—C7120.98 (18)
N1i—Co1—O190.91 (6)C5—C6—H6A119.5
N1—Co1—O1100.94 (6)C7—C6—H6A119.5
O1i—Co1—O166.54 (8)N1—C12—C4123.01 (17)
N1i—Co1—N293.19 (6)N1—C12—C11117.63 (16)
N1—Co1—N277.99 (6)C4—C12—C11119.33 (17)
O1i—Co1—N2157.72 (6)C11—C7—C8117.41 (18)
O1—Co1—N296.36 (6)C11—C7—C6119.39 (18)
N1i—Co1—N2i77.99 (6)C8—C7—C6123.19 (18)
N1—Co1—N2i93.19 (6)C12—C4—C3116.81 (18)
O1i—Co1—N2i96.36 (6)C12—C4—C5119.71 (18)
O1—Co1—N2i157.72 (6)C3—C4—C5123.45 (18)
N2—Co1—N2i103.42 (9)C8—C9—C10119.69 (19)
N1i—Co1—S197.06 (5)C8—C9—H9A120.2
N1—Co1—S197.06 (5)C10—C9—H9A120.2
O1i—Co1—S133.27 (4)C6—C5—C4120.73 (18)
O1—Co1—S133.27 (4)C6—C5—H5A119.6
N2—Co1—S1128.29 (5)C4—C5—H5A119.6
N2i—Co1—S1128.29 (5)C1—N1—C12118.30 (16)
O2—S1—O2i110.64 (15)C1—N1—Co1127.99 (14)
O2—S1—O1111.10 (9)C12—N1—Co1113.67 (12)
O2i—S1—O1110.18 (9)N1—C1—C2122.42 (19)
O2—S1—O1i110.18 (9)N1—C1—H1A118.8
O2i—S1—O1i111.10 (9)C2—C1—H1A118.8
O1—S1—O1i103.45 (12)C3—C2—C1119.41 (19)
O2—S1—Co1124.68 (7)C3—C2—H2A120.3
O2i—S1—Co1124.68 (7)C1—C2—H2A120.3
O1—S1—Co151.72 (6)C2—C3—C4120.05 (18)
O1i—S1—Co151.72 (6)C2—C3—H3A120.0
S1—O1—Co195.01 (7)C4—C3—H3A120.0
N2—C11—C7123.19 (17)C13—O3—H3B109.5
N2—C11—C12116.97 (16)C13i—C14—C13111.4 (3)
C7—C11—C12119.82 (17)C13i—C14—H14100 (3)
C10—N2—C11117.47 (17)C13—C14—H1477 (3)
C10—N2—Co1128.88 (13)O3—C13—C14112.8 (2)
C11—N2—Co1113.62 (12)O3—C13—H13A109.0
N2—C10—C9123.06 (18)C14—C13—H13A109.0
N2—C10—H10A118.5O3—C13—H13B109.0
C9—C10—H10A118.5C14—C13—H13B109.0
C9—C8—C7119.17 (19)H13A—C13—H13B107.8
N1i—Co1—S1—O29.86 (10)C11—N2—C10—C90.4 (3)
N1—Co1—S1—O2170.14 (10)Co1—N2—C10—C9178.16 (15)
O1i—Co1—S1—O289.33 (12)N2—C11—C12—N12.5 (3)
O1—Co1—S1—O290.67 (12)C7—C11—C12—N1176.19 (17)
N2—Co1—S1—O2109.61 (10)N2—C11—C12—C4179.60 (17)
N2i—Co1—S1—O270.39 (10)C7—C11—C12—C41.7 (3)
N1i—Co1—S1—O2i170.14 (10)N2—C11—C7—C81.0 (3)
N1—Co1—S1—O2i9.86 (10)C12—C11—C7—C8177.62 (17)
O1i—Co1—S1—O2i90.67 (12)N2—C11—C7—C6179.73 (18)
O1—Co1—S1—O2i89.33 (12)C12—C11—C7—C61.7 (3)
N2—Co1—S1—O2i70.39 (10)C9—C8—C7—C110.8 (3)
N2i—Co1—S1—O2i109.61 (10)C9—C8—C7—C6179.9 (2)
N1i—Co1—S1—O180.81 (9)C5—C6—C7—C110.1 (3)
N1—Co1—S1—O199.19 (9)C5—C6—C7—C8179.1 (2)
O1i—Co1—S1—O1180.0N1—C12—C4—C30.9 (3)
N2—Co1—S1—O118.94 (9)C11—C12—C4—C3178.66 (17)
N2i—Co1—S1—O1161.06 (9)N1—C12—C4—C5177.55 (18)
N1i—Co1—S1—O1i99.19 (9)C11—C12—C4—C50.2 (3)
N1—Co1—S1—O1i80.81 (9)C7—C8—C9—C100.5 (3)
O1—Co1—S1—O1i180.0N2—C10—C9—C80.3 (3)
N2—Co1—S1—O1i161.06 (9)C7—C6—C5—C41.4 (3)
N2i—Co1—S1—O1i18.94 (9)C12—C4—C5—C61.3 (3)
O2—S1—O1—Co1118.19 (9)C3—C4—C5—C6177.0 (2)
O2i—S1—O1—Co1118.83 (9)C4—C12—N1—C10.6 (3)
O1i—S1—O1—Co10.0C11—C12—N1—C1178.38 (17)
N1i—Co1—O1—S1101.54 (8)C4—C12—N1—Co1178.28 (14)
N1—Co1—O1—S186.20 (8)C11—C12—N1—Co13.9 (2)
O1i—Co1—O1—S10.0N1i—Co1—N1—C1128.19 (17)
N2—Co1—O1—S1165.15 (7)O1i—Co1—N1—C119.01 (17)
N2i—Co1—O1—S142.22 (19)O1—Co1—N1—C185.28 (18)
C7—C11—N2—C100.7 (3)N2—Co1—N1—C1179.54 (18)
C12—C11—N2—C10177.90 (17)N2i—Co1—N1—C177.41 (18)
C7—C11—N2—Co1178.87 (14)S1—Co1—N1—C151.81 (17)
C12—C11—N2—Co10.2 (2)N1i—Co1—N1—C1249.27 (13)
N1i—Co1—N2—C1014.97 (17)O1i—Co1—N1—C12163.52 (13)
N1—Co1—N2—C10176.18 (18)O1—Co1—N1—C1297.25 (14)
O1i—Co1—N2—C10114.64 (19)N2—Co1—N1—C122.99 (13)
O1—Co1—N2—C1076.30 (17)N2i—Co1—N1—C12100.06 (14)
N2i—Co1—N2—C1093.38 (17)S1—Co1—N1—C12130.73 (13)
S1—Co1—N2—C1086.62 (17)C12—N1—C1—C20.1 (3)
N1i—Co1—N2—C11167.15 (13)Co1—N1—C1—C2177.43 (15)
N1—Co1—N2—C111.71 (12)N1—C1—C2—C30.1 (3)
O1i—Co1—N2—C1163.2 (2)C1—C2—C3—C40.3 (3)
O1—Co1—N2—C11101.58 (13)C12—C4—C3—C20.7 (3)
N2i—Co1—N2—C1188.74 (13)C5—C4—C3—C2177.6 (2)
S1—Co1—N2—C1191.26 (13)C13i—C14—C13—O364.6 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.922.737 (3)179

Experimental details

Crystal data
Chemical formula[Co(SO4)(C12H8N2)2]·C3H8O2
Mr591.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.285 (4), 12.422 (3), 13.211 (3)
β (°) 121.82 (3)
V3)2549.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.60 × 0.40 × 0.34
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB: Jacobson, 1998)
Tmin, Tmax0.823, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7099, 2898, 2540
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.06
No. of reflections2898
No. of parameters183
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.45

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O20.821.922.737 (3)178.8
 

Acknowledgements

The work was supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010-17).

References

First citationChen, J.-M., Fan, S.-R. & Zhu, L.-G. (2005). Acta Cryst. E61, m1724–m1726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHennig, H., Benedix, R., Hempel, K. & Reinhold, J. (1975). Z. Anorg. Allg. Chem. 412, 141–147.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLi, F., Ma, Y.-G., Liu, S.-Y. & Shen, J.-C. (2004). Appl. Phys. Lett. 84, 148–150.  Web of Science CrossRef CAS Google Scholar
First citationLi, J. M. & Zhou, K. J. (1987). Jiegou Huaxue, 6, 198–200.  CAS Google Scholar
First citationLu, W.-J., Zhong, K.-L. & Zhu, Y.-M. (2006). Acta Cryst. E62, m891–m893.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859–3867.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, A.-R., Hwang, I.-C. & Ha, K. (2008). Acta Cryst. E64, m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-R., Hu, Y.-S., Shi, C.-L., Li, D.-P. & Li, Y.-F. (2009). Acta Cryst. E65, m789–m790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z.-M., Zhou, Z.-F. & Lin, H.-K. (2000). Chin. J. Inorg. Chem. 16, 267–272.  CAS Google Scholar
First citationZheng, Y. Q. & Lin, J. L. (2003). Z. Anorg. Allg. Chem. 629, 185–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds