supplementary materials


bq2201 scheme

Acta Cryst. (2010). E66, o1006    [ doi:10.1107/S1600536810010160 ]

2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate

S. Benzerka, A. Bouraiou, S. Bouacida, T. Roisnel and A. Belfaitah

Abstract top

In the title compound, C13H11BrClNO2, the two rings of the quinoline group are fused in an axial fashion at a dihedral angle of 1.28 (9)°. In the crystal, molecules are arranged in zigzag layers along the c axis. The crystal packing is stabilized by weak C-H...O hydrogen bonds and intermolecular interactions between Br and O atoms [Br...O= 3.076 (2) Å], resulting in the formation of a three-dimensional network.

Comment top

Benzylic bromination can be carried out using N-bromosuccinimide (NBS) under photocatalytic conditions (Djerassi, 1948; Newman et al., 1972). It is also known that NBS react with benzaldehyde diethylacetal to give corresponding ester (Marvell et al., 1951; Markees et al., 1958). Although extensive studies have been carried out in the past, selectivity clearly remains a common problem in radical bromination (Kikichi et al., 1998; Xu et al., 2003). In previous works, we have reported structure determination of some new quinoline derivatives (Benzerka et al., 2008; Ladraa et al., 2009; Ladraa et al., 2010). In this paper, we report the synthesis and structure determination of new compound, resulting from the radical bromination of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline, (I), under photocatalytic conditions. Our attempt to brominate the methyl group linked at C-6 position of quinoline ring, which has an acetal function at C-3, was failed and led to the 2-bromoethyl 2-chloro-6-methylquinoline-3-carboxylate (I). This compound is the result of the unwanted conversion of the acetal to the corresponding ester.

The molecular geometry and the atom-numbering scheme of (I) are shown in Figure 1. The asymmetric unit of title molecule contains a 2-bromoethylcarboxylate group linked to quinolyl moiety. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 1.28 (9)° The crystal structure can be described as layers in zig zag along of c-axis which quinoline rings are parallel to the (110) plane. The crystal packing is stabilized by weak hydrogen bonds [C—H···O] and intermolecular interactions between Br and O atoms [Br···O= 3.076 (2)] (Figure 2), resulting in the formation of a three dimensional network and reinforcing a cohesion of structure. Hydrogen-bonding parameters are listed in Table 1.

Related literature top

For our previous work on the preparation of quinoline derivatives, see: Benzerka et al. (2008); Ladraa et al. (2009, 2010). For radical bromination, see: Kikichi et al. (1998); Xu et al. (2003); Djerassi (1948); Newman et al. (1972). For radical bromination of ketone and acetal functions, see: Marvell et al. (1951); Markees et al. (1958).

Experimental top

The title compound (I) was synthesized by treating 1 mmol. of 2-chloro-3-(1,3-dioxolan-2-yl)-6-methylquinoline with 1 mmol. of N-bromosuccinimide in the presence of 0.5 mmol. of dibenzoylperoxide in CCl4 under photocatalytic conditions. The contents were then cooled and filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to column chromatography (silica gel, eluent: CH2Cl2) to afford pure product. Crystals suitable for x-ray analysis were obtained by slow evaporation of a dichloromethane solution of (I).

Refinement top

All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom. (with C—H = 0.93Å, 0.96Å, 0.97Å and Uiso(H) =1.2 or 1.5(carrier atom)).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) the structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) Part of crystal packing of (I) showing hydrogen bond [C—H···O] and short interaction [Br···O]as dashed line.
[Figure 3] Fig. 3. The formation of the title compound.
2-Bromoethyl 2-chloro-6-methylquinoline-3-carboxylate top
Crystal data top
C13H11BrClNO2F(000) = 656
Mr = 328.59Dx = 1.691 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1740 (4) ÅCell parameters from 3765 reflections
b = 29.0515 (14) Åθ = 2.8–27.3°
c = 7.2875 (4) ŵ = 3.39 mm1
β = 99.167 (3)°T = 100 K
V = 1290.42 (13) Å3Prism, colourless
Z = 40.45 × 0.38 × 0.11 mm
Data collection top
Bruker APEXII
diffractometer
2938 independent reflections
Radiation source: Enraf–Nonius FR5902430 reflections with I > 2σ(I)
graphiteRint = 0.054
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 77
Tmin = 0.238, Tmax = 0.689k = 3737
11364 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.2764P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C13H11BrClNO2V = 1290.42 (13) Å3
Mr = 328.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1740 (4) ŵ = 3.39 mm1
b = 29.0515 (14) ÅT = 100 K
c = 7.2875 (4) Å0.45 × 0.38 × 0.11 mm
β = 99.167 (3)°
Data collection top
Bruker APEXII
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2430 reflections with I > 2σ(I)
Tmin = 0.238, Tmax = 0.689Rint = 0.054
11364 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.74 e Å3
S = 1.02Δρmin = 0.85 e Å3
2938 reflectionsAbsolute structure: ?
164 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7808 (4)0.08966 (9)0.2084 (4)0.0164 (5)
C21.0027 (4)0.10023 (8)0.2862 (4)0.0152 (5)
C31.1423 (4)0.06355 (9)0.3242 (4)0.0151 (5)
H31.28740.06870.37750.018*
C41.0694 (4)0.01828 (9)0.2837 (4)0.0147 (5)
C51.2083 (4)0.02083 (9)0.3149 (4)0.0167 (6)
H51.35510.01690.36570.02*
C61.1299 (4)0.06439 (9)0.2713 (4)0.0161 (5)
C70.9057 (5)0.06973 (9)0.1919 (4)0.0180 (6)
H70.85170.09910.16160.022*
C80.7665 (4)0.03275 (9)0.1586 (4)0.0181 (6)
H80.62060.03710.10570.022*
C90.8464 (4)0.01207 (9)0.2053 (4)0.0147 (5)
C101.2752 (5)0.10631 (9)0.3046 (4)0.0204 (6)
H10A1.4250.09680.33940.031*
H10B1.26130.12440.1930.031*
H10C1.23170.12440.40270.031*
C111.0855 (4)0.14836 (9)0.3158 (4)0.0188 (6)
C121.3409 (5)0.19567 (9)0.5055 (5)0.0263 (7)
H12A1.37360.20750.38850.032*
H12B1.47880.19150.58830.032*
C131.2040 (5)0.23018 (9)0.5886 (5)0.0247 (7)
H13A1.0650.23420.5070.03*
H13B1.27890.25960.60020.03*
N10.7035 (4)0.04864 (7)0.1709 (3)0.0164 (5)
O11.0343 (4)0.17987 (7)0.2112 (3)0.0292 (5)
O21.2320 (3)0.15146 (6)0.4733 (3)0.0199 (4)
Cl10.58811 (11)0.13419 (2)0.16345 (10)0.02179 (17)
Br11.15019 (5)0.209908 (9)0.83386 (5)0.02814 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0161 (13)0.0178 (12)0.0153 (13)0.0059 (10)0.0026 (11)0.0012 (11)
C20.0163 (13)0.0125 (11)0.0176 (13)0.0006 (9)0.0050 (11)0.0013 (10)
C30.0117 (12)0.0159 (12)0.0180 (13)0.0001 (9)0.0030 (11)0.0004 (11)
C40.0134 (12)0.0140 (11)0.0169 (13)0.0012 (9)0.0035 (11)0.0000 (10)
C50.0124 (12)0.0174 (12)0.0200 (14)0.0012 (10)0.0018 (11)0.0007 (11)
C60.0177 (13)0.0160 (12)0.0150 (13)0.0031 (9)0.0039 (11)0.0005 (11)
C70.0207 (14)0.0130 (12)0.0198 (14)0.0013 (10)0.0019 (12)0.0006 (11)
C80.0151 (13)0.0179 (12)0.0202 (14)0.0014 (10)0.0004 (11)0.0036 (11)
C90.0147 (13)0.0142 (12)0.0151 (13)0.0016 (9)0.0017 (11)0.0002 (10)
C100.0207 (14)0.0147 (12)0.0261 (16)0.0042 (10)0.0045 (12)0.0006 (11)
C110.0169 (13)0.0144 (12)0.0281 (16)0.0005 (10)0.0123 (12)0.0014 (12)
C120.0254 (15)0.0119 (12)0.043 (2)0.0056 (11)0.0098 (14)0.0054 (13)
C130.0291 (16)0.0125 (12)0.0335 (18)0.0003 (11)0.0079 (14)0.0005 (12)
N10.0133 (11)0.0173 (10)0.0179 (12)0.0036 (8)0.0005 (9)0.0005 (10)
O10.0349 (12)0.0158 (9)0.0376 (13)0.0016 (8)0.0084 (11)0.0066 (10)
O20.0208 (10)0.0117 (8)0.0280 (11)0.0022 (7)0.0062 (9)0.0040 (8)
Cl10.0196 (3)0.0190 (3)0.0273 (4)0.0092 (2)0.0050 (3)0.0016 (3)
Br10.03431 (19)0.01765 (15)0.0334 (2)0.00054 (11)0.00824 (14)0.00443 (13)
Geometric parameters (Å, °) top
C1—N11.296 (3)C8—C91.415 (3)
C1—C21.430 (4)C8—H80.93
C1—Cl11.753 (3)C9—N11.378 (3)
C2—C31.371 (3)C10—H10A0.96
C2—C111.493 (3)C10—H10B0.96
C3—C41.406 (3)C10—H10C0.96
C3—H30.93C11—O11.201 (3)
C4—C91.416 (4)C11—O21.346 (3)
C4—C51.420 (3)C12—O21.451 (3)
C5—C61.374 (4)C12—C131.500 (4)
C5—H50.93C12—H12A0.97
C6—C71.422 (4)C12—H12B0.97
C6—C101.509 (3)C13—Br11.960 (3)
C7—C81.373 (4)C13—H13A0.97
C7—H70.93C13—H13B0.97
N1—C1—C2125.3 (2)N1—C9—C4121.9 (2)
N1—C1—Cl1115.0 (2)C8—C9—C4119.6 (2)
C2—C1—Cl1119.6 (2)C6—C10—H10A109.5
C3—C2—C1116.4 (2)C6—C10—H10B109.5
C3—C2—C11120.6 (2)H10A—C10—H10B109.5
C1—C2—C11122.9 (2)C6—C10—H10C109.5
C2—C3—C4121.0 (2)H10A—C10—H10C109.5
C2—C3—H3119.5H10B—C10—H10C109.5
C4—C3—H3119.5O1—C11—O2124.3 (2)
C3—C4—C9117.5 (2)O1—C11—C2125.0 (3)
C3—C4—C5123.4 (2)O2—C11—C2110.7 (2)
C9—C4—C5119.1 (2)O2—C12—C13112.4 (2)
C6—C5—C4121.2 (2)O2—C12—H12A109.1
C6—C5—H5119.4C13—C12—H12A109.1
C4—C5—H5119.4O2—C12—H12B109.1
C5—C6—C7118.6 (2)C13—C12—H12B109.1
C5—C6—C10121.9 (2)H12A—C12—H12B107.9
C7—C6—C10119.5 (2)C12—C13—Br1110.8 (2)
C8—C7—C6121.9 (2)C12—C13—H13A109.5
C8—C7—H7119.1Br1—C13—H13A109.5
C6—C7—H7119.1C12—C13—H13B109.5
C7—C8—C9119.5 (2)Br1—C13—H13B109.5
C7—C8—H8120.2H13A—C13—H13B108.1
C9—C8—H8120.2C1—N1—C9117.9 (2)
N1—C9—C8118.5 (2)C11—O2—C12115.3 (2)
N1—C1—C2—C30.3 (4)C3—C4—C9—N10.6 (4)
Cl1—C1—C2—C3177.6 (2)C5—C4—C9—N1179.7 (3)
N1—C1—C2—C11176.2 (3)C3—C4—C9—C8178.7 (3)
Cl1—C1—C2—C115.9 (4)C5—C4—C9—C80.4 (4)
C1—C2—C3—C41.4 (4)C3—C2—C11—O1137.8 (3)
C11—C2—C3—C4175.2 (3)C1—C2—C11—O138.6 (4)
C2—C3—C4—C91.0 (4)C3—C2—C11—O240.1 (4)
C2—C3—C4—C5178.1 (3)C1—C2—C11—O2143.5 (3)
C3—C4—C5—C6179.3 (3)O2—C12—C13—Br162.8 (3)
C9—C4—C5—C60.3 (4)C2—C1—N1—C91.2 (4)
C4—C5—C6—C70.6 (4)Cl1—C1—N1—C9179.2 (2)
C4—C5—C6—C10179.6 (3)C8—C9—N1—C1177.6 (3)
C5—C6—C7—C80.3 (4)C4—C9—N1—C11.7 (4)
C10—C6—C7—C8180.0 (3)O1—C11—O2—C124.3 (4)
C6—C7—C8—C90.4 (4)C2—C11—O2—C12173.6 (2)
C7—C8—C9—N1179.9 (3)C13—C12—O2—C1181.8 (3)
C7—C8—C9—C40.8 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.972.413.347 (4)162
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O1i0.972.413.347 (4)162
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.
Acknowledgements top

We are grateful to all personnel at the PHYSYNOR Laboratory, Université Mentouri-Constantine, for their assistance. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

references
References top

Benzerka, S., Bouraiou, A., Bouacida, S., Rhouati, S. & Belfaitah, A. (2008). Acta Cryst. E64, o2089–o2090.

Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Djerassi, C. (1948). Chem. Rev. 43, 271–317.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Kikichi, D., Sakaguchi, S. & Ishii, Y. (1998). J. Org. Chem. 63, 6023–6026.

Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2009). Acta Cryst. C65, o475–o478.

Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o693.

Markees, D. G. (1958). J. Org. Chem. 23, 1490–1492.

Marvell, E. N. & Joncich, M. J. (1951). J. Am. Chem. Soc. 73, 973–975.

Newman, M. S. & Lee, L. F. (1972). J. Org. Chem. 37, 4468–4469.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xu, F., Savary, K., Williams, J. M., Grabowski, E. J. J. & Reider, P. J. (2003). Tetrahedron Lett. 44, 1283–1286.