metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4′-(3-Pyrid­yl)-2,2′;6′,2′′-terpyridine]di­thio­cyanato­copper(II)

aCollege of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
*Correspondence e-mail: hudch@163.com, hfeng@nwnu.edu.cn

(Received 14 March 2010; accepted 18 March 2010; online 24 March 2010)

In the title compound, [Cu(NCS)2(C20H14N4)], the Cu atom is five-coordinated in a tetra­gonal-pyramidal geometry.

Related literature

For details of the synthesis, see: Constable & Thompson (1992[Constable, E. C. & Thompson, A. M. W. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2947-2950.]). For related structures, see: Feng et al. (2006[Feng, H., Zhou, X. P., Wu, T., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.]); Hou et al. (2004[Hou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181-m1182.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C20H14N4)]

  • Mr = 490.05

  • Monoclinic, P 21 /n

  • a = 8.2171 (6) Å

  • b = 23.012 (2) Å

  • c = 11.2279 (8) Å

  • β = 99.079 (1)°

  • V = 2096.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 298 K

  • 0.27 × 0.27 × 0.18 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.429, Tmax = 0.805

  • 12626 measured reflections

  • 4781 independent reflections

  • 3371 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.07

  • 4781 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The heterocyclic ligand 4'-(3-pyridyl)-2,2':6'2''-terpyridine was synthesized according to literature methods (Constable et al., 1992). As a excellent tridentate chelating ligand, it can furnish complexes from a large range of metal salts. The structure of the title compound, (I), obtained from copper(I) thiocyanate is shown in Fig. 1. The Cu(II) atom is chelated by a tridentate terpydine in a cis-cis configuration and two independent thiocyanate in a five-coordinate environment and shows distorted tetragonal pyramid geometry (Fig. 1). The Cu—N bonds range from 1.931 (3)Å to 2.143 (4)Å are comparable with those reported (Hou et al., 2004). In the monomer, one thiocyanate was in the apical site while the terpyridine and the other one thiocyanate were at the equatorial positions.

Related literature top

For details of the synthesis, see: Constable & Thompson (1992). For related structures, see: Feng et al. (2006); Hou et al. (2004).

Experimental top

The mixture of CuSCN (0.0125 g, 0.1 mmol), 4'-(3-pyridyl)-2,2':6'2''-terpyridine (0.0155 g, 0.05 mmol), acetonnitril (6 ml) were placed and sealed in a 10 ml Teflon-lined stainless steel reactor and heated to 140°C for 72 h, then cooled down to room temperature at a rate of 2°C per 20 min. Green block single crystals suitable for X-ray diffraction were obtained in ca. 60% yield

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å; U(H) = 1.2UeqC) and were included in the refinement in the riding model approximation.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 plot of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are omitted for clarity.
[4'-(3-Pyridyl)-2,2';6',2''-terpyridine]dithiocyanatocopper(II) top
Crystal data top
[Cu(NCS)2(C20H14N4)]F(000) = 996
Mr = 490.05Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2079 reflections
a = 8.2171 (6) Åθ = 2.6–21.4°
b = 23.012 (2) ŵ = 1.26 mm1
c = 11.2279 (8) ÅT = 298 K
β = 99.079 (1)°Block, green
V = 2096.5 (3) Å30.27 × 0.27 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
4781 independent reflections
Radiation source: fine-focus sealed tube3371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 105
Tmin = 0.429, Tmax = 0.805k = 2629
12626 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0832P)2]
where P = (Fo2 + 2Fc2)/3
4781 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(NCS)2(C20H14N4)]V = 2096.5 (3) Å3
Mr = 490.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2171 (6) ŵ = 1.26 mm1
b = 23.012 (2) ÅT = 298 K
c = 11.2279 (8) Å0.27 × 0.27 × 0.18 mm
β = 99.079 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4781 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3371 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.805Rint = 0.038
12626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.07Δρmax = 0.64 e Å3
4781 reflectionsΔρmin = 0.44 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35786 (5)0.135609 (18)0.69095 (4)0.04072 (18)
S10.5487 (2)0.10524 (7)0.30631 (12)0.0930 (5)
S20.69634 (16)0.05042 (5)1.01610 (12)0.0705 (4)
N10.4648 (4)0.21527 (13)0.7228 (3)0.0395 (7)
N20.1730 (3)0.18662 (12)0.6333 (3)0.0376 (7)
N30.1684 (4)0.07761 (13)0.6675 (3)0.0477 (8)
N40.4448 (5)0.12136 (17)0.5232 (4)0.0681 (11)
N50.5115 (4)0.09198 (15)0.8049 (3)0.0567 (9)
N60.4985 (4)0.30689 (15)0.3820 (3)0.0545 (9)
C10.6201 (4)0.22617 (17)0.7760 (4)0.0459 (9)
H10.68780.19500.80320.055*
C20.6827 (5)0.28129 (18)0.7918 (4)0.0517 (10)
H20.78990.28750.83060.062*
C30.5841 (5)0.32709 (17)0.7493 (4)0.0544 (11)
H30.62470.36480.75790.065*
C40.4239 (5)0.31726 (16)0.6935 (4)0.0473 (10)
H40.35560.34810.66490.057*
C50.3680 (4)0.26104 (15)0.6813 (3)0.0369 (8)
C60.1981 (4)0.24383 (15)0.6274 (3)0.0362 (8)
C70.0730 (4)0.28084 (15)0.5800 (3)0.0394 (8)
H70.09290.32040.57410.047*
C80.0849 (4)0.25821 (15)0.5408 (3)0.0378 (8)
C90.1082 (4)0.19839 (16)0.5516 (3)0.0414 (9)
H90.21160.18200.52720.050*
C100.0237 (4)0.16374 (15)0.5987 (3)0.0396 (8)
C110.0177 (5)0.10032 (16)0.6220 (4)0.0475 (10)
C120.1211 (6)0.0675 (2)0.6069 (5)0.0726 (15)
H120.22200.08390.57490.087*
C130.1112 (7)0.0091 (2)0.6397 (6)0.094 (2)
H130.20520.01400.63260.113*
C140.0431 (7)0.0137 (2)0.6833 (6)0.097 (2)
H140.05450.05290.70310.116*
C150.1769 (6)0.02138 (17)0.6969 (5)0.0661 (13)
H150.27910.00570.72800.079*
C160.4894 (5)0.36367 (19)0.4057 (4)0.0554 (11)
H160.58050.38660.37740.066*
C170.3527 (5)0.39026 (18)0.4697 (4)0.0550 (11)
H170.35140.43010.48350.066*
C180.2186 (5)0.35648 (16)0.5128 (4)0.0482 (10)
H180.12460.37340.55570.058*
C190.2235 (4)0.29699 (15)0.4923 (3)0.0374 (8)
C200.3672 (5)0.27481 (17)0.4255 (4)0.0480 (10)
H200.37200.23510.41020.058*
C220.4845 (5)0.11376 (17)0.4333 (4)0.0441 (9)
C230.5890 (5)0.07416 (16)0.8920 (4)0.0468 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0325 (3)0.0397 (3)0.0473 (3)0.00621 (19)0.0019 (2)0.00460 (19)
S10.1100 (13)0.1146 (12)0.0590 (8)0.0514 (10)0.0277 (8)0.0161 (8)
S20.0649 (8)0.0655 (8)0.0726 (8)0.0015 (6)0.0159 (6)0.0226 (6)
N10.0289 (15)0.0434 (17)0.0445 (17)0.0030 (13)0.0009 (13)0.0023 (13)
N20.0282 (15)0.0349 (15)0.0471 (18)0.0007 (12)0.0026 (13)0.0006 (13)
N30.0423 (18)0.0389 (17)0.057 (2)0.0000 (14)0.0059 (16)0.0046 (15)
N40.069 (3)0.073 (3)0.064 (3)0.017 (2)0.015 (2)0.001 (2)
N50.045 (2)0.055 (2)0.065 (2)0.0071 (17)0.0078 (18)0.0152 (17)
N60.0328 (17)0.061 (2)0.066 (2)0.0045 (16)0.0062 (16)0.0049 (17)
C10.0250 (18)0.052 (2)0.057 (2)0.0032 (16)0.0053 (17)0.0087 (18)
C20.0277 (18)0.062 (3)0.062 (3)0.0025 (18)0.0034 (18)0.004 (2)
C30.039 (2)0.045 (2)0.077 (3)0.0086 (19)0.003 (2)0.002 (2)
C40.0312 (19)0.040 (2)0.069 (3)0.0007 (17)0.0017 (18)0.0014 (18)
C50.0270 (17)0.044 (2)0.0386 (19)0.0037 (15)0.0016 (15)0.0003 (15)
C60.0280 (17)0.0418 (19)0.0378 (19)0.0031 (15)0.0021 (15)0.0020 (15)
C70.0333 (19)0.0378 (19)0.045 (2)0.0023 (15)0.0012 (16)0.0035 (15)
C80.0298 (18)0.041 (2)0.041 (2)0.0018 (15)0.0014 (15)0.0007 (15)
C90.0291 (18)0.042 (2)0.049 (2)0.0011 (16)0.0045 (16)0.0009 (16)
C100.0327 (19)0.039 (2)0.045 (2)0.0014 (16)0.0003 (16)0.0026 (16)
C110.044 (2)0.039 (2)0.055 (2)0.0036 (17)0.0060 (19)0.0045 (17)
C120.048 (3)0.057 (3)0.102 (4)0.009 (2)0.022 (3)0.015 (3)
C130.069 (3)0.052 (3)0.146 (5)0.022 (3)0.029 (4)0.024 (3)
C140.084 (4)0.047 (3)0.144 (6)0.011 (3)0.034 (4)0.033 (3)
C150.061 (3)0.042 (2)0.088 (3)0.003 (2)0.012 (3)0.014 (2)
C160.036 (2)0.063 (3)0.064 (3)0.016 (2)0.000 (2)0.015 (2)
C170.047 (2)0.041 (2)0.077 (3)0.0076 (19)0.008 (2)0.007 (2)
C180.034 (2)0.049 (2)0.057 (2)0.0013 (17)0.0050 (18)0.0067 (18)
C190.0278 (17)0.0392 (19)0.044 (2)0.0032 (15)0.0019 (15)0.0036 (15)
C200.035 (2)0.048 (2)0.057 (2)0.0032 (17)0.0060 (18)0.0001 (18)
C220.036 (2)0.044 (2)0.050 (2)0.0082 (17)0.0011 (18)0.0021 (18)
C230.036 (2)0.038 (2)0.065 (3)0.0003 (17)0.0044 (19)0.0053 (18)
Geometric parameters (Å, º) top
Cu1—N12.040 (3)C5—C61.485 (4)
Cu1—N21.948 (3)C6—C71.375 (5)
Cu1—N32.036 (3)C7—C81.403 (5)
Cu1—N42.143 (4)C7—H70.9300
Cu1—N51.931 (3)C8—C91.398 (5)
S1—C221.609 (5)C8—C191.482 (5)
S2—C231.622 (4)C9—C101.382 (5)
N1—C11.344 (4)C9—H90.9300
N1—C51.357 (4)C10—C111.485 (5)
N2—C101.335 (4)C11—C121.356 (6)
N2—C61.336 (4)C12—C131.395 (6)
N3—C151.334 (5)C12—H120.9300
N3—C111.366 (5)C13—C141.388 (7)
N4—C221.122 (5)C13—H130.9300
N5—C231.154 (5)C14—C151.353 (6)
N6—C161.333 (5)C14—H140.9300
N6—C201.334 (5)C15—H150.9300
C1—C21.370 (5)C16—C171.378 (6)
C1—H10.9300C16—H160.9300
C2—C31.369 (5)C17—C181.373 (5)
C2—H20.9300C17—H170.9300
C3—C41.384 (5)C18—C191.388 (5)
C3—H30.9300C18—H180.9300
C4—C51.373 (5)C19—C201.392 (5)
C4—H40.9300C20—H200.9300
N1—Cu1—N279.0 (1)C8—C7—H7120.4
N1—Cu1—N3155.7 (1)C9—C8—C7118.1 (3)
N1—Cu1—N495.6 (1)C9—C8—C19121.2 (3)
N1—Cu1—N597.6 (1)C7—C8—C19120.8 (3)
N2—Cu1—N379.1 (1)C10—C9—C8119.5 (3)
N2—Cu1—N498.7 (1)C10—C9—H9120.3
N2—Cu1—N5158.0 (2)C8—C9—H9120.3
N3—Cu1—N498.1 (2)N2—C10—C9120.9 (3)
N3—Cu1—N598.7 (1)N2—C10—C11113.0 (3)
N4—Cu1—N5103.2 (2)C9—C10—C11126.1 (3)
C1—N1—C5118.1 (3)C12—C11—N3121.9 (4)
C1—N1—Cu1126.7 (3)C12—C11—C10125.1 (4)
C5—N1—Cu1115.1 (2)N3—C11—C10112.9 (3)
C10—N2—C6121.1 (3)C11—C12—C13119.4 (4)
C10—N2—Cu1119.5 (2)C11—C12—H12120.3
C6—N2—Cu1119.5 (2)C13—C12—H12120.3
C15—N3—C11118.2 (3)C14—C13—C12118.0 (5)
C15—N3—Cu1126.5 (3)C14—C13—H13121.0
C11—N3—Cu1115.3 (2)C12—C13—H13121.0
C22—N4—Cu1177.4 (4)C15—C14—C13119.7 (4)
C23—N5—Cu1164.0 (4)C15—C14—H14120.2
C16—N6—C20116.9 (3)C13—C14—H14120.2
N1—C1—C2122.8 (3)N3—C15—C14122.7 (4)
N1—C1—H1118.6N3—C15—H15118.6
C2—C1—H1118.6C14—C15—H15118.6
C3—C2—C1118.6 (3)N6—C16—C17123.7 (4)
C3—C2—H2120.7N6—C16—H16118.2
C1—C2—H2120.7C17—C16—H16118.2
C2—C3—C4120.0 (4)C18—C17—C16118.4 (4)
C2—C3—H3120.0C18—C17—H17120.8
C4—C3—H3120.0C16—C17—H17120.8
C5—C4—C3118.6 (4)C17—C18—C19120.0 (4)
C5—C4—H4120.7C17—C18—H18120.0
C3—C4—H4120.7C19—C18—H18120.0
N1—C5—C4121.9 (3)C18—C19—C20116.8 (3)
N1—C5—C6113.3 (3)C18—C19—C8122.2 (3)
C4—C5—C6124.8 (3)C20—C19—C8121.0 (3)
N2—C6—C7121.2 (3)N6—C20—C19124.2 (4)
N2—C6—C5112.6 (3)N6—C20—H20117.9
C7—C6—C5126.1 (3)C19—C20—H20117.9
C6—C7—C8119.3 (3)N4—C22—S1177.1 (5)
C6—C7—H7120.4N5—C23—S2178.6 (4)
N5—Cu1—N1—C118.8 (3)N1—C5—C6—N21.7 (4)
N2—Cu1—N1—C1176.8 (3)C4—C5—C6—N2176.0 (3)
N3—Cu1—N1—C1150.6 (3)N1—C5—C6—C7178.9 (3)
N4—Cu1—N1—C185.4 (3)C4—C5—C6—C71.2 (6)
N5—Cu1—N1—C5163.6 (3)N2—C6—C7—C82.0 (5)
N2—Cu1—N1—C55.6 (2)C5—C6—C7—C8175.0 (3)
N3—Cu1—N1—C531.8 (4)C6—C7—C8—C90.1 (5)
N4—Cu1—N1—C592.2 (3)C6—C7—C8—C19178.4 (3)
N5—Cu1—N2—C1091.2 (4)C7—C8—C9—C100.7 (5)
N3—Cu1—N2—C104.8 (3)C19—C8—C9—C10179.1 (3)
N1—Cu1—N2—C10174.1 (3)C6—N2—C10—C92.3 (5)
N4—Cu1—N2—C1091.8 (3)Cu1—N2—C10—C9176.6 (3)
N5—Cu1—N2—C689.9 (4)C6—N2—C10—C11175.0 (3)
N3—Cu1—N2—C6176.3 (3)Cu1—N2—C10—C116.0 (4)
N1—Cu1—N2—C66.9 (3)C8—C9—C10—N20.4 (6)
N4—Cu1—N2—C687.1 (3)C8—C9—C10—C11176.6 (4)
N5—Cu1—N3—C1516.7 (4)C15—N3—C11—C120.3 (7)
N2—Cu1—N3—C15174.5 (4)Cu1—N3—C11—C12176.8 (4)
N1—Cu1—N3—C15148.3 (4)C15—N3—C11—C10177.2 (4)
N4—Cu1—N3—C1588.1 (4)Cu1—N3—C11—C100.0 (4)
N5—Cu1—N3—C11160.2 (3)N2—C10—C11—C12173.0 (4)
N2—Cu1—N3—C112.4 (3)C9—C10—C11—C124.1 (7)
N1—Cu1—N3—C1128.5 (5)N2—C10—C11—N33.7 (5)
N4—Cu1—N3—C1195.0 (3)C9—C10—C11—N3179.1 (4)
N2—Cu1—N5—C2315.6 (15)N3—C11—C12—C130.7 (8)
N3—Cu1—N5—C2398.2 (12)C10—C11—C12—C13175.7 (5)
N1—Cu1—N5—C2363.7 (12)C11—C12—C13—C142.1 (10)
N4—Cu1—N5—C23161.3 (12)C12—C13—C14—C152.5 (11)
C5—N1—C1—C21.3 (6)C11—N3—C15—C140.1 (8)
Cu1—N1—C1—C2178.8 (3)Cu1—N3—C15—C14176.9 (5)
N1—C1—C2—C31.5 (7)C13—C14—C15—N31.5 (10)
C1—C2—C3—C41.1 (7)C20—N6—C16—C171.2 (7)
C2—C3—C4—C50.5 (7)N6—C16—C17—C180.7 (7)
C1—N1—C5—C40.7 (5)C16—C17—C18—C190.5 (6)
Cu1—N1—C5—C4178.5 (3)C17—C18—C19—C201.2 (6)
C1—N1—C5—C6178.5 (3)C17—C18—C19—C8177.6 (4)
Cu1—N1—C5—C63.7 (4)C9—C8—C19—C18160.4 (4)
C3—C4—C5—N10.4 (6)C7—C8—C19—C1818.0 (6)
C3—C4—C5—C6177.9 (4)C9—C8—C19—C2018.2 (6)
C10—N2—C6—C73.1 (5)C7—C8—C19—C20163.3 (4)
Cu1—N2—C6—C7175.8 (3)C16—N6—C20—C190.4 (6)
C10—N2—C6—C5174.2 (3)C18—C19—C20—N60.7 (6)
Cu1—N2—C6—C56.8 (4)C8—C19—C20—N6178.0 (4)

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C20H14N4)]
Mr490.05
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.2171 (6), 23.012 (2), 11.2279 (8)
β (°) 99.079 (1)
V3)2096.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.27 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.429, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
12626, 4781, 3371
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.07
No. of reflections4781
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.44

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors thank Northwest Normal University for supporting this study.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. & Thompson, A. M. W. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2947–2950.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, H., Zhou, X. P., Wu, T., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, L., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1181–m1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds