organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)-3-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 March 2010; accepted 26 March 2010; online 31 March 2010)

In the mol­ecular structure of the title compound, C16H17NO, the N—H and C=O bonds are anti to each other. The two aromatic rings make a dihedral angle of 73.3 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into C(4) chains running along the c axis.

Related literature

For preparation of the title compound and related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2713.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, C c

  • a = 12.0715 (4) Å

  • b = 12.4966 (3) Å

  • c = 9.7027 (3) Å

  • β = 112.123 (4)°

  • V = 1355.92 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.55 × 0.30 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.972, Tmax = 0.989

  • 11288 measured reflections

  • 1371 independent reflections

  • 1260 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.08

  • 1371 reflections

  • 169 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.09 (2) 2.902 (2) 154 (2)
Symmetry code: (i) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, 2009), in the present work, the structure of N-(2,6-dimethylphenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(phenyl)3-methylbenzamide (II)(Gowda et al., 2008a), N-(2,6-dimethylphenyl)2-methylbenzamide (III) (Gowda et al., 2008b), N-(2,6-dichloromethylphenyl)- 3-methylbenzamide (IV)(Gowda et al., 2009) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is syn to the meta-methyl substituent in the benzoyl ring, similar to that observed in (III) and (IV), but contrary to the anti conformation observed between the C=O bond and the meta-methyl group in the benzoyl ring of (II).

The two aromatic rings make a dihedral angle of 73.3 (1) °. The amide group –NH–C(=O)– is twisted by 81.0 (1)° and 25.8 (2)° out of the planes of the 2,6-dimethylphenyl and 3-methylphenyl rings, respectively. In the crystal, intermolecular N–H···O hydrogen bonds (Table 1) connect the molecules into chains running along the c-axis (Fig. 2).

Related literature top

For preparation of the title compound, see: Gowda et al. (2008a,b). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b, 2009).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2008a,b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

H atoms bounded to carbon atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å. The coordinates of the amide H atom were refined with the N–H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and Friedel pairs were merged. Any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing molecular chains running along the c-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted. Symmetry code:(i) x, -y+1, z+1/2.
N-(2,6-Dimethylphenyl)-3-methylbenzamide top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.172 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6791 reflections
a = 12.0715 (4) Åθ = 2.3–29.5°
b = 12.4966 (3) ŵ = 0.07 mm1
c = 9.7027 (3) ÅT = 295 K
β = 112.123 (4)°Block, colourless
V = 1355.92 (7) Å30.55 × 0.30 × 0.18 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1371 independent reflections
Graphite monochromator1260 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.030
ω scansθmax = 26.2°, θmin = 2.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.972, Tmax = 0.989k = 1515
11288 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.1381P]
where P = (Fo2 + 2Fc2)/3
1371 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.09 e Å3
3 restraintsΔρmin = 0.11 e Å3
Crystal data top
C16H17NOV = 1355.92 (7) Å3
Mr = 239.31Z = 4
Monoclinic, CcMo Kα radiation
a = 12.0715 (4) ŵ = 0.07 mm1
b = 12.4966 (3) ÅT = 295 K
c = 9.7027 (3) Å0.55 × 0.30 × 0.18 mm
β = 112.123 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1371 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1260 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.989Rint = 0.030
11288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.09 e Å3
1371 reflectionsΔρmin = 0.11 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78435 (17)0.48438 (15)0.42193 (19)0.0400 (4)
C20.67477 (16)0.55392 (15)0.3679 (2)0.0411 (4)
C30.58869 (18)0.53174 (18)0.2278 (2)0.0482 (5)
H30.60040.47450.17360.058*
C40.48627 (19)0.5928 (2)0.1676 (2)0.0558 (5)
C50.4723 (2)0.6792 (2)0.2490 (3)0.0622 (6)
H50.40470.72210.20950.075*
C60.5568 (2)0.7029 (2)0.3876 (3)0.0602 (5)
H60.54570.76120.44070.072*
C70.65776 (19)0.64009 (17)0.4474 (2)0.0486 (5)
H70.71440.65560.54130.058*
C80.95159 (17)0.41695 (16)0.63591 (19)0.0422 (4)
C91.05908 (18)0.46294 (17)0.6440 (2)0.0494 (5)
C101.1631 (2)0.4041 (2)0.7137 (3)0.0621 (6)
H101.2360.43270.72020.074*
C111.1606 (2)0.3050 (2)0.7730 (3)0.0677 (7)
H111.23140.26740.81990.081*
C121.0537 (3)0.2613 (2)0.7630 (3)0.0631 (6)
H121.05290.19390.80320.076*
C130.9464 (2)0.31583 (16)0.6939 (2)0.0496 (5)
C140.3930 (3)0.5643 (3)0.0162 (3)0.0890 (9)
H14A0.33830.62290.02010.134*
H14B0.350.50180.02510.134*
H14C0.43180.55020.0520.134*
C151.0634 (3)0.5708 (2)0.5791 (4)0.0742 (7)
H15A1.14470.59550.61420.111*
H15B1.01590.62030.6090.111*
H15C1.03260.56580.47260.111*
C160.8297 (3)0.2675 (2)0.6825 (3)0.0724 (7)
H16A0.83670.1910.6870.109*
H16B0.76840.28810.58980.109*
H16C0.80910.29260.76330.109*
N10.84288 (14)0.47696 (14)0.56895 (16)0.0447 (4)
H1N0.813 (2)0.5097 (19)0.627 (3)0.054*
O10.81747 (13)0.43660 (12)0.33310 (16)0.0518 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (9)0.0448 (9)0.0324 (9)0.0060 (8)0.0137 (7)0.0005 (8)
C20.0397 (9)0.0481 (10)0.0340 (9)0.0046 (8)0.0120 (7)0.0050 (8)
C30.0482 (11)0.0587 (12)0.0359 (10)0.0064 (9)0.0138 (9)0.0009 (9)
C40.0458 (11)0.0759 (14)0.0402 (11)0.0028 (10)0.0099 (9)0.0115 (10)
C50.0512 (12)0.0728 (15)0.0604 (14)0.0135 (11)0.0185 (11)0.0195 (12)
C60.0631 (13)0.0576 (12)0.0598 (14)0.0085 (11)0.0229 (11)0.0032 (10)
C70.0487 (10)0.0525 (11)0.0408 (10)0.0012 (9)0.0125 (8)0.0009 (9)
C80.0453 (10)0.0484 (10)0.0304 (8)0.0037 (8)0.0114 (8)0.0028 (7)
C90.0473 (11)0.0570 (12)0.0418 (11)0.0009 (9)0.0146 (9)0.0057 (9)
C100.0456 (12)0.0837 (16)0.0536 (13)0.0025 (11)0.0149 (10)0.0075 (12)
C110.0613 (15)0.0842 (18)0.0515 (12)0.0281 (13)0.0141 (11)0.0041 (12)
C120.0868 (17)0.0527 (13)0.0523 (13)0.0181 (12)0.0291 (12)0.0080 (10)
C130.0605 (11)0.0510 (11)0.0376 (9)0.0016 (10)0.0187 (9)0.0024 (8)
C140.0626 (16)0.133 (3)0.0529 (15)0.0034 (17)0.0006 (13)0.0060 (16)
C150.0653 (15)0.0700 (15)0.0866 (19)0.0104 (13)0.0280 (14)0.0054 (14)
C160.0841 (17)0.0659 (15)0.0730 (16)0.0121 (13)0.0361 (14)0.0059 (13)
N10.0446 (9)0.0578 (10)0.0314 (8)0.0074 (7)0.0141 (7)0.0007 (7)
O10.0549 (8)0.0638 (9)0.0357 (7)0.0053 (7)0.0161 (6)0.0030 (6)
Geometric parameters (Å, º) top
C1—O11.232 (2)C9—C151.496 (3)
C1—N11.336 (2)C10—C111.371 (4)
C1—C21.502 (3)C10—H100.93
C2—C71.385 (3)C11—C121.370 (4)
C2—C31.392 (3)C11—H110.93
C3—C41.381 (3)C12—C131.392 (3)
C3—H30.93C12—H120.93
C4—C51.386 (4)C13—C161.498 (4)
C4—C141.518 (3)C14—H14A0.96
C5—C61.380 (3)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C71.381 (3)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—H70.93C15—H15C0.96
C8—C131.394 (3)C16—H16A0.96
C8—C91.394 (3)C16—H16B0.96
C8—N11.437 (3)C16—H16C0.96
C9—C101.391 (3)N1—H1N0.875 (17)
O1—C1—N1122.20 (18)C12—C11—C10119.9 (2)
O1—C1—C2120.72 (16)C12—C11—H11120
N1—C1—C2117.08 (16)C10—C11—H11120
C7—C2—C3119.08 (17)C11—C12—C13121.3 (2)
C7—C2—C1123.44 (16)C11—C12—H12119.3
C3—C2—C1117.45 (17)C13—C12—H12119.3
C4—C3—C2121.5 (2)C12—C13—C8117.6 (2)
C4—C3—H3119.2C12—C13—C16121.1 (2)
C2—C3—H3119.2C8—C13—C16121.3 (2)
C3—C4—C5118.1 (2)C4—C14—H14A109.5
C3—C4—C14120.0 (2)C4—C14—H14B109.5
C5—C4—C14121.9 (2)H14A—C14—H14B109.5
C6—C5—C4121.3 (2)C4—C14—H14C109.5
C6—C5—H5119.4H14A—C14—H14C109.5
C4—C5—H5119.4H14B—C14—H14C109.5
C5—C6—C7119.9 (2)C9—C15—H15A109.5
C5—C6—H6120C9—C15—H15B109.5
C7—C6—H6120H15A—C15—H15B109.5
C6—C7—C2120.05 (19)C9—C15—H15C109.5
C6—C7—H7120H15A—C15—H15C109.5
C2—C7—H7120H15B—C15—H15C109.5
C13—C8—C9122.22 (18)C13—C16—H16A109.5
C13—C8—N1118.92 (18)C13—C16—H16B109.5
C9—C8—N1118.84 (18)H16A—C16—H16B109.5
C10—C9—C8117.4 (2)C13—C16—H16C109.5
C10—C9—C15120.8 (2)H16A—C16—H16C109.5
C8—C9—C15121.80 (19)H16B—C16—H16C109.5
C11—C10—C9121.6 (2)C1—N1—C8123.02 (16)
C11—C10—H10119.2C1—N1—H1N118.3 (17)
C9—C10—H10119.2C8—N1—H1N118.7 (17)
O1—C1—C2—C7153.25 (19)C13—C8—C9—C15179.0 (2)
N1—C1—C2—C726.9 (3)N1—C8—C9—C152.6 (3)
O1—C1—C2—C324.4 (3)C8—C9—C10—C110.3 (3)
N1—C1—C2—C3155.44 (17)C15—C9—C10—C11179.7 (2)
C7—C2—C3—C40.8 (3)C9—C10—C11—C120.6 (4)
C1—C2—C3—C4178.60 (18)C10—C11—C12—C130.2 (3)
C2—C3—C4—C51.6 (3)C11—C12—C13—C80.4 (3)
C2—C3—C4—C14178.4 (2)C11—C12—C13—C16179.6 (2)
C3—C4—C5—C61.2 (3)C9—C8—C13—C120.7 (3)
C14—C4—C5—C6178.8 (3)N1—C8—C13—C12177.66 (18)
C4—C5—C6—C70.1 (3)C9—C8—C13—C16179.3 (2)
C5—C6—C7—C20.6 (3)N1—C8—C13—C162.3 (3)
C3—C2—C7—C60.3 (3)O1—C1—N1—C82.8 (3)
C1—C2—C7—C6177.36 (19)C2—C1—N1—C8177.37 (17)
C13—C8—C9—C100.4 (3)C13—C8—N1—C1101.4 (2)
N1—C8—C9—C10177.99 (18)C9—C8—N1—C180.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.09 (2)2.902 (2)154 (2)
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)12.0715 (4), 12.4966 (3), 9.7027 (3)
β (°) 112.123 (4)
V3)1355.92 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.55 × 0.30 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11288, 1371, 1260
Rint0.030
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.08
No. of reflections1371
No. of parameters169
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.09, 0.11

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.875 (17)2.092 (19)2.902 (2)154 (2)
Symmetry code: (i) x, y+1, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2713.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds