organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o783-o784

2-Amino-5-chloro­pyridinium tri­fluoro­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 February 2010; accepted 3 March 2010; online 10 March 2010)

The asymmetric unit of the title salt, C5H6ClN2+·C2F3O2, contains two independent 2-amino-5-chloro­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12):0.328 (12) and 0.587 (15):0.413 (15). In the crystal, the cations and anions are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]); Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o464-o465.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C2F3O2

  • Mr = 242.59

  • Monoclinic, P c

  • a = 5.0377 (1) Å

  • b = 11.2923 (2) Å

  • c = 17.5386 (3) Å

  • β = 90.001 (1)°

  • V = 997.72 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 296 K

  • 0.43 × 0.26 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.945

  • 17652 measured reflections

  • 4388 independent reflections

  • 3191 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.03

  • 4388 reflections

  • 375 parameters

  • 110 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2096 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Ai 0.94 (3) 1.79 (3) 2.727 (3) 173 (3)
N2A—H2NA⋯O2Ai 0.90 (3) 1.95 (3) 2.840 (4) 175 (3)
N2A—H3NA⋯O1Bii 0.87 (3) 2.00 (2) 2.863 (3) 171 (4)
N1B—H1NB⋯O1Biii 0.87 (3) 1.87 (3) 2.734 (3) 175 (3)
N2B—H2NB⋯O2Biii 0.90 (2) 1.94 (2) 2.838 (4) 170 (2)
N2B—H3NB⋯O1A 0.87 (3) 1.99 (2) 2.861 (3) 175 (4)
C5A—H5AA⋯O2Bi 0.97 (3) 2.29 (3) 3.210 (4) 158 (3)
C5B—H5BA⋯O2Aiv 0.96 (3) 2.31 (3) 3.208 (3) 157 (3)
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-chloropyridinium 4-hydroxybenzoate (Hemamalini & Fun, 2010a), 2-amino-5-chloropyridine benzoic acid (Hemamalini & Fun, 2010b) and 2-amino-5-chloropyridinium hydrogen succinate. (Hemamalini & Fun, 2010c). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.017 (3) Å for atom C3A in cation A and 0.026 (1) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A–N1A–C5A [122.7 (3)°] and C1B—N1B—C5B [123.2 (3)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the A/B type 2-amino-5-chloropyridinium cations interact with the carboxylate groups of the A/B type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) (Bernstein et al., 1995) ring motif. The packing is further stabilized by weak C5A—H5AA···O2B and C5B—H5BA···O2A (Table 1) hydrogen bonds.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Pourayoubi et al. (2007); Hemamalini & Fun (2010a,b,c). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To a hot methanol solution (20 ml) of 2-amino-5-chloropyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement top

All H atoms were located in a difference Fourier map and refined [N—H =0.87 (2)–0.94 (3) Å and C—H =0.94 (4)–0.98 (4) Å]; the N–H distances of the NH2 groups were restrained to be equal. The F atoms of both anions are disordered over two positions, with site occupancies of 0.672 (12) and 0.328 (12) in one of the anions, and 0.587 (15):0.413 (15) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) networks.
2-Amino-5-chloropyridinium trifluoroacetate top
Crystal data top
C5H6ClN2+·C2F3O2F(000) = 488
Mr = 242.59Dx = 1.615 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 6764 reflections
a = 5.0377 (1) Åθ = 2.9–23.0°
b = 11.2923 (2) ŵ = 0.41 mm1
c = 17.5386 (3) ÅT = 296 K
β = 90.001 (1)°Blcok, colourless
V = 997.72 (3) Å30.43 × 0.26 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4388 independent reflections
Radiation source: fine-focus sealed tube3191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.842, Tmax = 0.945k = 1414
17652 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0781P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4388 reflectionsΔρmax = 0.12 e Å3
375 parametersΔρmin = 0.15 e Å3
110 restraintsAbsolute structure: Flack (1983), 2096 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C5H6ClN2+·C2F3O2V = 997.72 (3) Å3
Mr = 242.59Z = 4
Monoclinic, PcMo Kα radiation
a = 5.0377 (1) ŵ = 0.41 mm1
b = 11.2923 (2) ÅT = 296 K
c = 17.5386 (3) Å0.43 × 0.26 × 0.14 mm
β = 90.001 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3191 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.945Rint = 0.027
17652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.12 e Å3
S = 1.03Δρmin = 0.15 e Å3
4388 reflectionsAbsolute structure: Flack (1983), 2096 Friedel pairs
375 parametersAbsolute structure parameter: 0.01 (7)
110 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A1.1299 (2)0.65347 (8)0.53508 (6)0.0863 (3)
N1A0.6452 (5)0.84270 (19)0.40858 (15)0.0509 (6)
N2A0.5936 (6)1.0402 (2)0.38078 (18)0.0688 (7)
C1A0.7219 (6)0.9568 (2)0.41821 (16)0.0535 (7)
C2A0.9320 (6)0.9791 (3)0.46873 (17)0.0620 (7)
C3A1.0548 (7)0.8880 (3)0.50499 (18)0.0657 (8)
C4A0.9711 (6)0.7707 (2)0.49139 (16)0.0598 (7)
C5A0.7678 (6)0.7505 (3)0.44427 (18)0.0547 (7)
Cl1B0.6300 (2)0.84657 (8)0.66202 (6)0.0862 (3)
N1B0.1456 (5)0.65696 (18)0.78845 (16)0.0515 (6)
N2B0.0936 (6)0.4597 (2)0.81654 (19)0.0696 (7)
C1B0.2208 (6)0.5431 (2)0.77885 (16)0.0536 (7)
C2B0.4312 (6)0.5216 (3)0.72826 (17)0.0622 (7)
C3B0.5552 (7)0.6116 (3)0.69219 (18)0.0647 (8)
C4B0.4720 (6)0.7291 (2)0.70553 (16)0.0592 (7)
C5B0.2675 (6)0.7496 (2)0.75301 (17)0.0543 (7)
F1A0.1120 (15)0.2688 (5)0.6659 (3)0.103 (2)0.672 (12)
F2A0.2319 (10)0.2039 (11)0.7180 (3)0.145 (3)0.672 (12)
F3A0.002 (2)0.0953 (5)0.6438 (3)0.133 (3)0.672 (12)
F1C0.050 (4)0.2829 (7)0.6917 (10)0.120 (5)0.328 (12)
F2C0.217 (2)0.1179 (12)0.6924 (8)0.113 (4)0.328 (12)
F3C0.135 (3)0.1402 (18)0.6367 (6)0.143 (6)0.328 (12)
O1A0.2546 (5)0.21708 (17)0.80805 (12)0.0645 (5)
O2A0.1855 (6)0.0286 (2)0.77827 (16)0.0847 (7)
C6A0.1664 (6)0.1353 (3)0.76755 (19)0.0562 (7)
C7A0.0082 (7)0.1732 (3)0.69751 (19)0.0725 (9)
F1B0.6266 (18)0.7635 (7)1.0334 (4)0.106 (2)0.587 (15)
F2B0.2762 (14)0.7160 (13)0.9780 (4)0.134 (3)0.587 (15)
F3B0.473 (3)0.5940 (5)1.0508 (5)0.129 (3)0.587 (15)
F1D0.490 (4)0.7839 (5)1.0133 (8)0.120 (4)0.413 (15)
F2D0.2692 (17)0.6301 (14)0.9986 (7)0.123 (4)0.413 (15)
F3D0.615 (3)0.6227 (14)1.0603 (5)0.134 (4)0.413 (15)
O1B0.7544 (5)0.71703 (17)0.88936 (12)0.0642 (5)
O2B0.6855 (6)0.5286 (2)0.91889 (15)0.0840 (7)
C6B0.6665 (6)0.6354 (3)0.92942 (19)0.0560 (7)
C7B0.5093 (7)0.6735 (3)0.99991 (19)0.0718 (9)
H1NA0.507 (7)0.829 (3)0.3734 (17)0.059 (8)*
H2NA0.470 (6)1.021 (3)0.3463 (17)0.073 (10)*
H3NA0.652 (7)1.112 (2)0.388 (2)0.071 (10)*
H2AA0.998 (8)1.056 (4)0.477 (2)0.081 (10)*
H3AA1.194 (7)0.905 (3)0.543 (2)0.073 (10)*
H5AA0.694 (6)0.673 (3)0.4342 (16)0.050 (7)*
H1NB0.023 (7)0.672 (3)0.8221 (18)0.059 (9)*
H2NB0.023 (5)0.479 (2)0.8537 (14)0.057 (8)*
H3NB0.143 (8)0.386 (2)0.811 (2)0.079 (11)*
H2BA0.494 (7)0.448 (3)0.719 (2)0.077 (10)*
H3BA0.701 (8)0.598 (4)0.656 (2)0.081 (11)*
H5BA0.192 (7)0.826 (3)0.7621 (19)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0909 (6)0.0709 (6)0.0971 (6)0.0149 (5)0.0160 (5)0.0077 (5)
N1A0.0552 (15)0.0349 (13)0.0625 (15)0.0015 (9)0.0004 (12)0.0045 (10)
N2A0.082 (2)0.0340 (13)0.0903 (19)0.0087 (13)0.0106 (16)0.0013 (13)
C1A0.0606 (17)0.0382 (15)0.0618 (17)0.0065 (12)0.0072 (14)0.0057 (12)
C2A0.0690 (19)0.0444 (15)0.0727 (18)0.0111 (14)0.0036 (15)0.0073 (13)
C3A0.065 (2)0.067 (2)0.0655 (19)0.0096 (16)0.0006 (16)0.0126 (15)
C4A0.0682 (19)0.0514 (15)0.0597 (15)0.0034 (14)0.0031 (14)0.0035 (12)
C5A0.0636 (19)0.0372 (14)0.0634 (16)0.0017 (13)0.0059 (14)0.0033 (12)
Cl1B0.0915 (6)0.0693 (6)0.0976 (6)0.0155 (5)0.0171 (5)0.0067 (5)
N1B0.0584 (16)0.0329 (13)0.0632 (16)0.0015 (10)0.0008 (12)0.0044 (10)
N2B0.084 (2)0.0342 (13)0.0906 (19)0.0067 (13)0.0139 (16)0.0000 (13)
C1B0.0582 (17)0.0381 (16)0.0644 (18)0.0067 (12)0.0075 (14)0.0054 (12)
C2B0.0684 (19)0.0443 (15)0.0737 (18)0.0119 (14)0.0043 (15)0.0100 (13)
C3B0.067 (2)0.0648 (19)0.0627 (18)0.0089 (16)0.0010 (16)0.0096 (15)
C4B0.0669 (18)0.0516 (15)0.0592 (15)0.0050 (14)0.0034 (14)0.0023 (12)
C5B0.0641 (19)0.0370 (14)0.0617 (16)0.0009 (13)0.0068 (14)0.0045 (12)
F1A0.137 (5)0.087 (3)0.085 (3)0.028 (3)0.016 (2)0.036 (2)
F2A0.079 (3)0.232 (8)0.126 (4)0.045 (4)0.002 (2)0.037 (5)
F3A0.211 (7)0.091 (3)0.096 (3)0.004 (3)0.049 (4)0.036 (2)
F1C0.159 (10)0.061 (4)0.141 (8)0.016 (6)0.064 (7)0.002 (5)
F2C0.088 (6)0.104 (7)0.147 (8)0.016 (5)0.041 (5)0.011 (6)
F3C0.148 (9)0.204 (11)0.078 (6)0.006 (7)0.005 (6)0.007 (7)
O1A0.0824 (15)0.0373 (11)0.0737 (13)0.0111 (9)0.0104 (11)0.0062 (9)
O2A0.1066 (19)0.0374 (13)0.110 (2)0.0061 (12)0.0211 (15)0.0014 (12)
C6A0.0601 (18)0.0410 (16)0.0676 (18)0.0045 (13)0.0056 (13)0.0019 (13)
C7A0.089 (3)0.0580 (19)0.071 (2)0.0068 (18)0.0022 (18)0.0009 (15)
F1B0.122 (5)0.110 (5)0.085 (3)0.021 (3)0.008 (3)0.041 (3)
F2B0.086 (4)0.196 (8)0.122 (4)0.049 (5)0.006 (3)0.022 (5)
F3B0.188 (8)0.085 (3)0.116 (4)0.012 (4)0.061 (5)0.028 (3)
F1D0.174 (9)0.052 (3)0.134 (7)0.006 (5)0.077 (7)0.007 (4)
F2D0.072 (4)0.141 (8)0.156 (7)0.012 (5)0.030 (4)0.026 (6)
F3D0.150 (8)0.184 (9)0.066 (4)0.001 (6)0.001 (5)0.033 (5)
O1B0.0833 (15)0.0377 (11)0.0715 (13)0.0099 (9)0.0124 (11)0.0067 (9)
O2B0.1067 (19)0.0370 (12)0.1083 (19)0.0034 (12)0.0226 (14)0.0008 (12)
C6B0.0605 (18)0.0381 (16)0.0696 (18)0.0039 (13)0.0061 (13)0.0001 (13)
C7B0.089 (3)0.0571 (19)0.070 (2)0.0047 (18)0.0054 (18)0.0018 (15)
Geometric parameters (Å, º) top
Cl1A—C4A1.726 (3)C2B—H2BA0.90 (4)
N1A—C1A1.355 (4)C3B—C4B1.411 (5)
N1A—C5A1.362 (4)C3B—H3BA0.98 (4)
N1A—H1NA0.94 (3)C4B—C5B1.345 (4)
N2A—C1A1.317 (4)C5B—H5BA0.95 (4)
N2A—H2NA0.90 (2)F1A—C7A1.321 (4)
N2A—H3NA0.87 (2)F2A—C7A1.308 (5)
C1A—C2A1.403 (4)F3A—C7A1.290 (5)
C2A—C3A1.358 (5)F1C—C7A1.276 (7)
C2A—H2AA0.94 (4)F2C—C7A1.299 (7)
C3A—C4A1.411 (5)F3C—C7A1.299 (7)
C3A—H3AA0.98 (4)O1A—C6A1.247 (4)
C4A—C5A1.336 (4)O2A—C6A1.223 (4)
C5A—H5AA0.97 (3)C6A—C7A1.525 (5)
Cl1B—C4B1.725 (3)F1B—C7B1.314 (5)
N1B—C1B1.351 (4)F2B—C7B1.325 (5)
N1B—C5B1.363 (4)F3B—C7B1.280 (5)
N1B—H1NB0.87 (3)F1D—C7B1.272 (6)
N2B—C1B1.317 (4)F2D—C7B1.306 (6)
N2B—H2NB0.902 (19)F3D—C7B1.317 (7)
N2B—H3NB0.87 (2)O1B—C6B1.240 (4)
C1B—C2B1.404 (4)O2B—C6B1.224 (4)
C2B—C3B1.351 (5)C6B—C7B1.530 (5)
C1A—N1A—C5A122.7 (3)C2B—C3B—C4B119.5 (3)
C1A—N1A—H1NA116.9 (18)C2B—C3B—H3BA122 (3)
C5A—N1A—H1NA120.4 (18)C4B—C3B—H3BA119 (3)
C1A—N2A—H2NA120 (2)C5B—C4B—C3B119.5 (3)
C1A—N2A—H3NA115 (3)C5B—C4B—Cl1B119.7 (2)
H2NA—N2A—H3NA124 (3)C3B—C4B—Cl1B120.8 (3)
N2A—C1A—N1A118.5 (3)C4B—C5B—N1B119.7 (3)
N2A—C1A—C2A123.8 (3)C4B—C5B—H5BA124 (2)
N1A—C1A—C2A117.7 (3)N1B—C5B—H5BA116 (2)
C3A—C2A—C1A120.2 (3)O2A—C6A—O1A127.9 (3)
C3A—C2A—H2AA118 (2)O2A—C6A—C7A116.2 (3)
C1A—C2A—H2AA122 (2)O1A—C6A—C7A115.9 (3)
C2A—C3A—C4A119.7 (3)F1C—C7A—F3C109.0 (10)
C2A—C3A—H3AA120 (2)F1C—C7A—F2C105.1 (8)
C4A—C3A—H3AA121 (2)F3C—C7A—F2C103.6 (9)
C5A—C4A—C3A119.6 (3)F3A—C7A—F2A110.2 (6)
C5A—C4A—Cl1A119.9 (2)F3A—C7A—F1A105.4 (5)
C3A—C4A—Cl1A120.4 (3)F2A—C7A—F1A105.4 (5)
C4A—C5A—N1A120.1 (3)F3A—C7A—C6A114.6 (4)
C4A—C5A—H5AA124.3 (18)F2A—C7A—C6A109.6 (3)
N1A—C5A—H5AA115.6 (18)F1A—C7A—C6A111.1 (3)
C1B—N1B—C5B123.2 (3)O2B—C6B—O1B128.2 (3)
C1B—N1B—H1NB118 (2)O2B—C6B—C7B116.1 (3)
C5B—N1B—H1NB118 (2)O1B—C6B—C7B115.7 (3)
C1B—N2B—H2NB120.5 (18)F1D—C7B—F2D107.5 (7)
C1B—N2B—H3NB119 (3)F3B—C7B—F1B107.1 (6)
H2NB—N2B—H3NB119 (3)F1D—C7B—F3D108.0 (9)
N2B—C1B—N1B118.8 (3)F2D—C7B—F3D103.0 (7)
N2B—C1B—C2B124.1 (3)F3B—C7B—F2B109.3 (6)
N1B—C1B—C2B117.1 (3)F1B—C7B—F2B104.3 (5)
C3B—C2B—C1B121.0 (3)F3B—C7B—C6B116.1 (4)
C3B—C2B—H2BA117 (2)F1B—C7B—C6B110.3 (4)
C1B—C2B—H2BA122 (2)F2B—C7B—C6B109.0 (4)
C5A—N1A—C1A—N2A179.3 (3)O2A—C6A—C7A—F3A24.8 (7)
C5A—N1A—C1A—C2A1.7 (4)O1A—C6A—C7A—F3A157.0 (6)
N2A—C1A—C2A—C3A179.8 (3)O2A—C6A—C7A—F3C66.6 (11)
N1A—C1A—C2A—C3A1.2 (4)O1A—C6A—C7A—F3C115.3 (11)
C1A—C2A—C3A—C4A0.3 (5)O2A—C6A—C7A—F2C47.5 (10)
C2A—C3A—C4A—C5A1.5 (5)O1A—C6A—C7A—F2C130.6 (9)
C2A—C3A—C4A—Cl1A178.4 (2)O2A—C6A—C7A—F2A99.7 (7)
C3A—C4A—C5A—N1A1.1 (4)O1A—C6A—C7A—F2A78.4 (7)
Cl1A—C4A—C5A—N1A178.8 (2)O2A—C6A—C7A—F1A144.2 (5)
C1A—N1A—C5A—C4A0.5 (4)O1A—C6A—C7A—F1A37.6 (5)
C5B—N1B—C1B—N2B178.9 (3)O2B—C6B—C7B—F1D178.7 (12)
C5B—N1B—C1B—C2B1.5 (4)O1B—C6B—C7B—F1D2.6 (12)
N2B—C1B—C2B—C3B179.1 (3)O2B—C6B—C7B—F3B17.6 (8)
N1B—C1B—C2B—C3B1.3 (4)O1B—C6B—C7B—F3B163.7 (8)
C1B—C2B—C3B—C4B0.0 (5)O2B—C6B—C7B—F2D56.8 (10)
C2B—C3B—C4B—C5B1.1 (5)O1B—C6B—C7B—F2D121.9 (9)
C2B—C3B—C4B—Cl1B178.7 (3)O2B—C6B—C7B—F1B139.6 (6)
C3B—C4B—C5B—N1B0.9 (4)O1B—C6B—C7B—F1B41.6 (6)
Cl1B—C4B—C5B—N1B178.8 (2)O2B—C6B—C7B—F3D55.7 (9)
C1B—N1B—C5B—C4B0.4 (4)O1B—C6B—C7B—F3D125.6 (9)
O2A—C6A—C7A—F1C169.3 (13)O2B—C6B—C7B—F2B106.4 (8)
O1A—C6A—C7A—F1C8.9 (13)O1B—C6B—C7B—F2B72.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.94 (3)1.79 (3)2.727 (3)173 (3)
N2A—H2NA···O2Ai0.90 (3)1.95 (3)2.840 (4)175 (3)
N2A—H3NA···O1Bii0.87 (3)2.00 (2)2.863 (3)171 (4)
N1B—H1NB···O1Biii0.87 (3)1.87 (3)2.734 (3)175 (3)
N2B—H2NB···O2Biii0.90 (2)1.94 (2)2.838 (4)170 (2)
N2B—H3NB···O1A0.87 (3)1.99 (2)2.861 (3)175 (4)
C5A—H5AA···O2Bi0.97 (3)2.29 (3)3.210 (4)158 (3)
C5B—H5BA···O2Aiv0.96 (3)2.31 (3)3.208 (3)157 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z1/2; (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C2F3O2
Mr242.59
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)5.0377 (1), 11.2923 (2), 17.5386 (3)
β (°) 90.001 (1)
V3)997.72 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.43 × 0.26 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.842, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
17652, 4388, 3191
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.03
No. of reflections4388
No. of parameters375
No. of restraints110
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.15
Absolute structureFlack (1983), 2096 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Ai0.94 (3)1.79 (3)2.727 (3)173 (3)
N2A—H2NA···O2Ai0.90 (3)1.95 (3)2.840 (4)175 (3)
N2A—H3NA···O1Bii0.87 (3)2.00 (2)2.863 (3)171 (4)
N1B—H1NB···O1Biii0.87 (3)1.87 (3)2.734 (3)175 (3)
N2B—H2NB···O2Biii0.90 (2)1.94 (2)2.838 (4)170 (2)
N2B—H3NB···O1A0.87 (3)1.99 (2)2.861 (3)175 (4)
C5A—H5AA···O2Bi0.97 (3)2.29 (3)3.210 (4)158 (3)
C5B—H5BA···O2Aiv0.96 (3)2.31 (3)3.208 (3)157 (3)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+2, z1/2; (iii) x1, y, z; (iv) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o783-o784
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds