organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(4-methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 March 2010; accepted 10 March 2010; online 17 March 2010)

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules which differ in the orientation of the tribromo group. A weak intra­molecular N—H⋯Br hydrogen bond is observed in each mol­ecule. In the crystal, the independent mol­ecules are linked into chains along the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For our study of the effect of ring and the side-chain substituents on the solid-state structures of N-aromatic amides and for similar structures, see: Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]); Gowda et al. (2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o3242.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2226.],c[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o2172.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br3NO

  • Mr = 385.89

  • Monoclinic, P 21 /c

  • a = 9.6926 (6) Å

  • b = 20.531 (1) Å

  • c = 11.8139 (8) Å

  • β = 102.664 (7)°

  • V = 2293.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.52 mm−1

  • T = 299 K

  • 0.48 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.081, Tmax = 0.145

  • 14714 measured reflections

  • 4121 independent reflections

  • 3375 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.151

  • S = 1.28

  • 4121 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.86 2.27 3.078 (10) 156
N1—H1N⋯Br2 0.86 2.61 3.111 (8) 118
N2—H2N⋯O1i 0.86 2.27 3.032 (10) 148
N2—H2N⋯Br4 0.86 2.56 3.051 (9) 118
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of the ring and the side chain substituents on solid state structures of N-aromatic amides (Gowda et al., 2009a,b,c), in the present work, the crytsal structure of 2,2,2-tribromo-N-(4-methylphenyl)acetamide has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules, which differ in the orientation of the tribromo group as is evident from either the C-N-CO-CBr3 or N-CO-C-Br torsional angles. The conformations of the N—H bonds in both molecules are anti to the CO bonds in the side chains, similar to those observed in 2,2,2-tribromo-N-(3-methylphenyl)acetamide (Gowda et al., 2009a), 2,2,2-tribromo-N-(phenyl)acetamide (Gowda et al., 2009b), 2,2,2-tribromo-N-(4-chlorophenyl)acetamide (Gowda et al., 2009c) and other amides (Brown, 1966). The structure of the title compound shows both the intramolecular N—H···Br and intermolecular N—H···O hydrogen bonding.

The packing diagram of molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our study of the effect of ring and the side-chain substituents on the solid-state structures of N-aromatic amides and for similar structures, see: Brown (1966); Gowda et al. (2009a,b,c).

Experimental top

The title compound was prepared from p-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement top

H atoms were positioned with idealized geometry using a riding model with C–H = 0.93–0.96 Å, N–H = 0.86 Å and Uiso(H) = 1.2Ueq(parent atom). The residual electron-density features are located in the region of Br4 and Br3. The highest peak is 0.99 Å from Br4 and the deepest hole is 1.28 Å from Br3. Owing to the poor diffraction quality of the crystal, the Rint value is high (0.089) and this is a structure of relatively low precision.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing in the crystal structure of the title compound, with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-(4-methylphenyl)acetamide top
Crystal data top
C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5162 reflections
a = 9.6926 (6) Åθ = 2.7–27.8°
b = 20.531 (1) ŵ = 10.52 mm1
c = 11.8139 (8) ÅT = 299 K
β = 102.664 (7)°Prism, colourless
V = 2293.8 (2) Å30.48 × 0.40 × 0.30 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4121 independent reflections
Radiation source: fine-focus sealed tube3375 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Rotation method data acquisition using ω and ϕ scans.θmax = 25.4°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.081, Tmax = 0.145k = 2124
14714 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.P)2 + 26.8682P]
where P = (Fo2 + 2Fc2)/3
4121 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C9H8Br3NOV = 2293.8 (2) Å3
Mr = 385.89Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.6926 (6) ŵ = 10.52 mm1
b = 20.531 (1) ÅT = 299 K
c = 11.8139 (8) Å0.48 × 0.40 × 0.30 mm
β = 102.664 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4121 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3375 reflections with I > 2σ(I)
Tmin = 0.081, Tmax = 0.145Rint = 0.089
14714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.P)2 + 26.8682P]
where P = (Fo2 + 2Fc2)/3
4121 reflectionsΔρmax = 1.34 e Å3
255 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7165 (11)0.2486 (4)0.6954 (9)0.029 (2)
C20.7414 (11)0.1962 (5)0.6292 (10)0.035 (3)
H20.69480.15690.63350.043*
C30.8348 (12)0.2017 (5)0.5568 (11)0.043 (3)
H30.85160.16580.51360.051*
C40.9039 (11)0.2598 (5)0.5475 (9)0.034 (2)
C50.8797 (12)0.3110 (5)0.6175 (10)0.039 (3)
H50.92790.35000.61490.047*
C60.7875 (12)0.3065 (5)0.6901 (10)0.037 (3)
H60.77300.34190.73530.044*
C70.5389 (11)0.2876 (4)0.7992 (9)0.028 (2)
C80.4213 (11)0.2643 (4)0.8592 (9)0.029 (2)
C91.0009 (12)0.2673 (6)0.4652 (10)0.043 (3)
H9A0.94640.26670.38690.052*
H9B1.06750.23200.47620.052*
H9C1.05070.30790.48000.052*
Br10.37301 (14)0.33225 (5)0.95617 (12)0.0480 (4)
Br20.46539 (15)0.18686 (5)0.95318 (12)0.0510 (4)
Br30.25450 (14)0.24690 (6)0.73598 (12)0.0531 (4)
N10.6157 (9)0.2404 (4)0.7652 (8)0.033 (2)
H1N0.60290.20150.78770.039*
O10.5509 (8)0.3449 (3)0.7822 (7)0.042 (2)
C100.3798 (10)0.0087 (4)0.6530 (9)0.025 (2)
C110.3488 (11)0.0253 (5)0.5503 (10)0.036 (3)
H110.40450.06060.53900.044*
C120.2340 (11)0.0068 (5)0.4633 (10)0.034 (3)
H120.21440.02970.39370.041*
C130.1478 (10)0.0452 (5)0.4785 (9)0.029 (2)
C140.1792 (12)0.0765 (5)0.5829 (11)0.038 (3)
H140.12200.11080.59600.046*
C150.2935 (12)0.0590 (5)0.6701 (10)0.035 (3)
H150.31170.08130.74030.042*
C160.5967 (10)0.0331 (5)0.7916 (10)0.030 (2)
C170.7240 (12)0.0074 (5)0.8818 (10)0.036 (3)
C180.0294 (13)0.0685 (5)0.3837 (10)0.042 (3)
H18A0.00320.03460.32700.050*
H18B0.05950.10620.34750.050*
H18C0.05040.07950.41570.050*
Br40.75931 (14)0.08465 (6)0.87190 (14)0.0582 (4)
Br50.89309 (14)0.05436 (7)0.86845 (12)0.0540 (4)
Br60.69036 (17)0.02579 (8)1.03563 (12)0.0661 (4)
N20.5023 (9)0.0097 (4)0.7398 (8)0.032 (2)
H2N0.51440.05010.75860.038*
O20.5901 (9)0.0912 (3)0.7746 (8)0.049 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.024 (5)0.027 (5)0.037 (7)0.003 (4)0.006 (5)0.004 (4)
C20.032 (6)0.025 (5)0.049 (8)0.002 (4)0.007 (6)0.001 (5)
C30.039 (7)0.034 (6)0.057 (9)0.005 (5)0.015 (6)0.011 (5)
C40.031 (6)0.045 (6)0.020 (6)0.008 (5)0.004 (5)0.007 (5)
C50.032 (6)0.036 (6)0.049 (8)0.008 (5)0.006 (6)0.003 (5)
C60.035 (6)0.033 (5)0.043 (7)0.006 (5)0.008 (6)0.009 (5)
C70.030 (6)0.027 (5)0.028 (6)0.001 (4)0.006 (5)0.001 (4)
C80.030 (6)0.022 (5)0.029 (6)0.005 (4)0.008 (5)0.002 (4)
C90.035 (7)0.055 (7)0.035 (7)0.003 (6)0.004 (6)0.009 (6)
Br10.0487 (7)0.0402 (6)0.0610 (9)0.0018 (5)0.0251 (7)0.0155 (6)
Br20.0660 (9)0.0386 (6)0.0484 (8)0.0034 (6)0.0128 (7)0.0101 (6)
Br30.0423 (7)0.0586 (8)0.0496 (9)0.0124 (6)0.0086 (6)0.0035 (6)
N10.035 (5)0.015 (4)0.049 (6)0.000 (4)0.009 (5)0.002 (4)
O10.042 (5)0.021 (4)0.064 (6)0.004 (3)0.017 (4)0.001 (3)
C100.024 (5)0.022 (5)0.027 (6)0.003 (4)0.001 (5)0.004 (4)
C110.027 (6)0.030 (5)0.051 (8)0.001 (5)0.007 (6)0.002 (5)
C120.032 (6)0.037 (6)0.032 (7)0.000 (5)0.004 (5)0.003 (5)
C130.024 (5)0.028 (5)0.034 (7)0.000 (4)0.007 (5)0.008 (5)
C140.035 (6)0.028 (5)0.053 (8)0.007 (5)0.014 (6)0.003 (5)
C150.048 (7)0.026 (5)0.030 (7)0.001 (5)0.002 (6)0.010 (5)
C160.023 (5)0.026 (5)0.044 (7)0.001 (4)0.012 (5)0.003 (5)
C170.034 (6)0.026 (5)0.044 (7)0.009 (5)0.001 (6)0.004 (5)
C180.045 (7)0.046 (6)0.031 (7)0.006 (6)0.002 (6)0.009 (5)
Br40.0472 (8)0.0352 (6)0.0788 (11)0.0055 (5)0.0149 (7)0.0032 (6)
Br50.0393 (7)0.0677 (8)0.0523 (9)0.0199 (6)0.0043 (6)0.0008 (7)
Br60.0644 (10)0.0966 (11)0.0391 (8)0.0102 (8)0.0150 (7)0.0027 (7)
N20.033 (5)0.018 (4)0.040 (6)0.002 (4)0.001 (4)0.001 (4)
O20.044 (5)0.022 (4)0.076 (7)0.008 (3)0.001 (5)0.005 (4)
Geometric parameters (Å, º) top
C1—C21.383 (14)C10—C151.371 (13)
C1—C61.382 (13)C10—C111.374 (14)
C1—N11.420 (12)C10—N21.439 (13)
C2—C31.380 (15)C11—C121.392 (15)
C2—H20.93C11—H110.93
C3—C41.384 (15)C12—C131.392 (13)
C3—H30.93C12—H120.93
C4—C51.389 (14)C13—C141.366 (15)
C4—C91.501 (15)C13—C181.495 (15)
C5—C61.371 (15)C14—C151.384 (16)
C5—H50.93C14—H140.93
C6—H60.93C15—H150.93
C7—O11.201 (11)C16—O21.209 (11)
C7—N11.337 (12)C16—N21.318 (13)
C7—C81.545 (14)C16—C171.536 (15)
C8—Br11.927 (9)C17—Br41.928 (10)
C8—Br21.932 (9)C17—Br51.938 (10)
C8—Br31.957 (10)C17—Br61.953 (11)
C9—H9A0.96C18—H18A0.96
C9—H9B0.96C18—H18B0.96
C9—H9C0.96C18—H18C0.96
N1—H1N0.86N2—H2N0.86
C2—C1—C6119.6 (9)C15—C10—C11119.3 (10)
C2—C1—N1117.7 (8)C15—C10—N2121.8 (9)
C6—C1—N1122.8 (9)C11—C10—N2118.8 (9)
C3—C2—C1120.5 (9)C10—C11—C12119.9 (10)
C3—C2—H2119.8C10—C11—H11120.1
C1—C2—H2119.8C12—C11—H11120.1
C2—C3—C4120.9 (10)C13—C12—C11121.3 (10)
C2—C3—H3119.5C13—C12—H12119.4
C4—C3—H3119.5C11—C12—H12119.4
C3—C4—C5117.2 (10)C14—C13—C12117.2 (10)
C3—C4—C9121.5 (10)C14—C13—C18120.6 (9)
C5—C4—C9121.3 (10)C12—C13—C18122.2 (10)
C6—C5—C4122.7 (10)C13—C14—C15122.2 (10)
C6—C5—H5118.7C13—C14—H14118.9
C4—C5—H5118.7C15—C14—H14118.9
C5—C6—C1119.1 (10)C10—C15—C14120.1 (10)
C5—C6—H6120.5C10—C15—H15120.0
C1—C6—H6120.5C14—C15—H15120.0
O1—C7—N1125.4 (9)O2—C16—N2125.0 (11)
O1—C7—C8119.2 (8)O2—C16—C17117.4 (9)
N1—C7—C8115.3 (8)N2—C16—C17117.6 (8)
C7—C8—Br1110.4 (6)C16—C17—Br4114.9 (7)
C7—C8—Br2115.2 (6)C16—C17—Br5109.7 (7)
Br1—C8—Br2107.8 (5)Br4—C17—Br5108.5 (5)
C7—C8—Br3106.7 (7)C16—C17—Br6107.9 (7)
Br1—C8—Br3107.8 (5)Br4—C17—Br6108.3 (5)
Br2—C8—Br3108.7 (5)Br5—C17—Br6107.2 (5)
C4—C9—H9A109.5C13—C18—H18A109.5
C4—C9—H9B109.5C13—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C4—C9—H9C109.5C13—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1126.0 (8)C16—N2—C10122.4 (8)
C7—N1—H1N117.0C16—N2—H2N118.8
C1—N1—H1N117.0C10—N2—H2N118.8
C6—C1—C2—C31.0 (17)C15—C10—C11—C122.5 (14)
N1—C1—C2—C3178.0 (10)N2—C10—C11—C12177.6 (9)
C1—C2—C3—C41.0 (18)C10—C11—C12—C130.8 (15)
C2—C3—C4—C52.7 (17)C11—C12—C13—C141.2 (14)
C2—C3—C4—C9177.3 (11)C11—C12—C13—C18176.1 (10)
C3—C4—C5—C62.6 (17)C12—C13—C14—C151.5 (15)
C9—C4—C5—C6177.4 (11)C18—C13—C14—C15175.8 (10)
C4—C5—C6—C10.7 (18)C11—C10—C15—C142.2 (15)
C2—C1—C6—C51.2 (17)N2—C10—C15—C14177.9 (9)
N1—C1—C6—C5177.8 (11)C13—C14—C15—C100.1 (16)
O1—C7—C8—Br126.3 (12)O2—C16—C17—Br4162.1 (8)
N1—C7—C8—Br1156.8 (8)N2—C16—C17—Br418.7 (12)
O1—C7—C8—Br2148.7 (9)O2—C16—C17—Br539.5 (12)
N1—C7—C8—Br234.4 (12)N2—C16—C17—Br5141.3 (8)
O1—C7—C8—Br390.6 (10)O2—C16—C17—Br677.0 (10)
N1—C7—C8—Br386.3 (9)N2—C16—C17—Br6102.2 (9)
O1—C7—N1—C15.5 (18)O2—C16—N2—C101.6 (16)
C8—C7—N1—C1171.2 (10)C17—C16—N2—C10179.3 (9)
C2—C1—N1—C7153.2 (11)C15—C10—N2—C1649.1 (14)
C6—C1—N1—C725.8 (17)C11—C10—N2—C16130.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.273.078 (10)156
N1—H1N···Br20.862.613.111 (8)118
N2—H2N···O1i0.862.273.032 (10)148
N2—H2N···Br40.862.563.051 (9)118
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H8Br3NO
Mr385.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.6926 (6), 20.531 (1), 11.8139 (8)
β (°) 102.664 (7)
V3)2293.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)10.52
Crystal size (mm)0.48 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.081, 0.145
No. of measured, independent and
observed [I > 2σ(I)] reflections
14714, 4121, 3375
Rint0.089
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.151, 1.28
No. of reflections4121
No. of parameters255
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 26.8682P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.34, 0.88

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.862.273.078 (10)156
N1—H1N···Br20.862.613.111 (8)118
N2—H2N···O1i0.862.273.032 (10)148
N2—H2N···Br40.862.563.051 (9)118
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o3242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2226.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009c). Acta Cryst. E65, o2172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds